201 research outputs found

    Anisotropic magnetoresistance in a 2DEG in a quasi-random magnetic field

    Full text link
    We present magnetotransport results for a 2D electron gas (2DEG) subject to the quasi-random magnetic field produced by randomly positioned sub-micron Co dots deposited onto the surface of a GaAs/AlGaAs heterostructure. We observe strong local and non-local anisotropic magnetoresistance for external magnetic fields in the plane of the 2DEG. Monte-Carlo calculations confirm that this is due to the changing topology of the quasi-random magnetic field in which electrons are guided predominantly along contours of zero magnetic field.Comment: 4 pages, 6 figures, submitted to Phys. Rev.

    Optically opaque color-flavor locked phase inside compact stars

    Get PDF
    The contribution of thermally excited electron-positron pairs to the bulk properties of the color-flavor locked quark phase inside compact stars is examined. The presence of these pairs causes the photon mean free path to be much smaller than a typical core radius (R0≃1R_0 \simeq 1 km) for all temperatures above 25 keV so that the photon contribution to the thermal conductivity is much smaller than that of the Nambu-Goldstone bosons. We also find that the electrons and positrons dominate the electrical conductivity, while their contributions to the total thermal energy is negligible.Comment: 3 pages, 2 figures. Published versio

    Absence of lattice strain anomalies at the electronic topological transition in zinc at high pressure

    Full text link
    High pressure structural distortions of the hexagonal close packed (hcp) element zinc have been a subject of controversy. Earlier experimental results and theory showed a large anomaly in lattice strain with compression in zinc at about 10 GPa which was explained theoretically by a change in Fermi surface topology. Later hydrostatic experiments showed no such anomaly, resulting in a discrepancy between theory and experiment. We have computed the compression and lattice strain of hcp zinc over a wide range of compressions using the linearized augmented plane wave (LAPW) method paying special attention to k-point convergence. We find that the behavior of the lattice strain is strongly dependent on k-point sampling, and with large k-point sets the previously computed anomaly in lattice parameters under compression disappears, in agreement with recent experiments.Comment: 9 pages, 6 figures, Phys. Rev. B (in press

    Breached Pairing Superfluidity at Finite Temperature and Density

    Full text link
    A general analysis on Fermion pairing at finite temperature and density between different species with mismatched Fermi surfaces is presented. Very different from the temperature effect of BCS phase, the recently found breached pairing phase resulted from density difference of the two species lies in a region with calabash-like shape in the T−ΌT-\mu plane, and the most probable temperature for the new phase's creation is finite but not zero.Comment: 5 papes, 5 figures. Comments are welcome to [email protected]

    Warm stellar matter with deconfinement: application to compact stars

    Full text link
    We investigate the properties of mixed stars formed by hadronic and quark matter in ÎČ\beta-equilibrium described by appropriate equations of state (EOS) in the framework of relativistic mean-field theory. We use the non- linear Walecka model for the hadron matter and the MIT Bag and the Nambu-Jona-Lasinio models for the quark matter. The phase transition to a deconfined quark phase is investigated. In particular, we study the dependence of the onset of a mixed phase and a pure quark phase on the hyperon couplings, quark model and properties of the hadronic model. We calculate the strangeness fraction with baryonic density for the different EOS. With the NJL model the strangeness content in the mixed phase decreases. The calculations were performed for T=0 and for finite temperatures in order to describe neutron and proto-neutron stars. The star properties are discussed. Both the Bag model and the NJL model predict a mixed phase in the interior of the star. Maximum allowed masses for proto-neutron stars are larger for the NJL model (∌1.9\sim 1.9 M⹀_{\bigodot}) than for the Bag model (∌1.6\sim 1.6 M⹀_{\bigodot}).Comment: RevTeX,14 figures, accepted to publication in Physical Review

    Spin-one color superconductivity in compact stars?- an analysis within NJL-type models

    Full text link
    We present results of a microscopic calculation using NJL-type model of possible spin-one pairings in two flavor quark matter for applications in compact star phenomenology. We focus on the color-spin locking phase (CSL) in which all quarks pair in a symmetric way, in which color and spin states are locked. The CSL condensate is particularly interesting for compact star applications since it is flavor symmetric and could easily satisfy charge neutrality. Moreover, the fact that in this phase all quarks are gapped might help to suppress the direct Urca process, consistent with cooling models. The order of magnitude of these small gaps (~1 MeV) will not influence the EoS, but their also small critical temperatures (T_c ~800 keV) could be relevant in the late stages neutron star evolution, when the temperature falls below this value and a CSL quark core could form.Comment: 7 pages, 7 figures, revised version, accepted for the Conference Proceedings of "Isolated Neutron Stars: from the Interior to the Surface", London, 24-28. April 200

    A calculation of the QCD phase diagram at finite temperature, and baryon and isospin chemical potentials

    Full text link
    We study the phases of a two-flavor Nambu-Jona-Lasinio model at finite temperature TT, baryon and isospin chemical potentials: ÎŒB=(ÎŒu+ÎŒd)/2\mu_{B}=(\mu_{u}+\mu_{d})/2, ÎŒI=(ÎŒu−Όd)/2\mu_{I}=(\mu_{u}-\mu_{d})/2. This study completes a previous analysis where only small isospin chemical potentials ÎŒI\mu_{I} were consideredComment: 21 pages, 13 figures included, two more refernces adde

    Chiral symmetry breaking, color superconductivity and color neutral quark matter: a variational approach

    Full text link
    We investigate the vacuum realignment for chiral symmetry breaking and color superconductivity at finite density in Nambu-Jona-Lasinio model in a variational method. The treatment allows us to investigate simultaneous formation of condensates in quark antiquark as well as in diquark channels. The methodology involves an explicit construction of a variational ground state and minimisation of the thermodynamic potential. Color and electric charge neutrality conditions are imposed through introduction of appropriate chemical potentials. Color and flavor dependent condensate functions are determined through minimisation of the thermodynamic potential. The equation of state is calculated. Simultaneous existence of a mass gap and superconducting gap is seen in a small window of quark chemical potential within the model when charge neutrality conditions are not imposed. Enforcing color and electric charge neutrality conditions gives rise to existence of gapless superconducting modes depending upon the magnitude of the gap and the difference of the chemical potentials of the condensing quarks.Comment: 13 pages, 6 figures,to appear in Phys. Rev.

    Frustration and the Kondo effect in heavy fermion materials

    Full text link
    The observation of a separation between the antiferromagnetic phase boundary and the small-large Fermi surface transition in recent experiments has led to the proposal that frustration is an important additional tuning parameter in the Kondo lattice model of heavy fermion materials. The introduction of a Kondo (K) and a frustration (Q) axis into the phase diagram permits us to discuss the physics of heavy fermion materials in a broader perspective. The current experimental situation is analysed in the context of this combined "QK" phase diagram. We discuss various theoretical models for the frustrated Kondo lattice, using general arguments to characterize the nature of the ff-electron localization transition that occurs between the spin liquid and heavy Fermi liquid ground-states. We concentrate in particular on the Shastry--Sutherland Kondo lattice model, for which we establish the qualitative phase diagram using strong coupling arguments and the large-NN expansion. The paper closes with some brief remarks on promising future theoretical directions.Comment: To appear in a special issue of JLT

    Two lectures on color superconductivity

    Full text link
    The first lecture provides an introduction to the physics of color superconductivity in cold dense quark matter. The main color superconducting phases are briefly described and their properties are listed. The second lecture covers recent developments in studies of color superconducting phases in neutral and beta-equilibrated matter. The properties of gapless color superconducting phases are discussed.Comment: 56 pages, 9 figures. Minor corrections and references added. Lectures delivered at the IARD 2004 conference, Saas Fee, Switzerland, June 12 - 19, 2004, and at the Helmholtz International Summer School and Workshop on Hot points in Astrophysics and Cosmology, JINR, Dubna, Russia, August 2 - 13, 200
    • 

    corecore