89 research outputs found

    Операционная модель квантовых измерений Курышкина-Вудкевича

    Get PDF
    K. Wodkiewicz describes Holevo-Helstrom method, and proposes his own operational model of quantum measurements as an example of using this method. It involves the quantum probability distribution function P q,p = Wψ * Wφ q,p. Here Wφ is the Wigner distribution function of the quantum state of a quantum system before measurement, Wψ is the quantum Wigner distribution function of the quantum filter before the measurement procedure. It is known that the convolution of two quantum Wigner distribution functions is positive-definite probability distribution function in phase space of a quantum system. Quantum Wigner distribution function is uniquely related to Weyl quantization rule, which says that a classical observable A q,p corresponds to a (pseudo) differential operator OW A, whose symbol is the function A q,p. The paper states that Kuryshkin quantization rule is associated with the quantum distribution Kuryshkin-Wodkiewicz function. This quantization rule corresponds to a classical observable A q,p the operator of the observable Oψ A with the symbol AG q,p = A * Φ q,p. Here Φ q,p = 2πℏ −3 2 e−ipq ℏ ψ q ˜ ψ p, where ˜ψ p is the Fourier transform of the state function ψ q of the quantum filter.К. Вудкевич описывает метод Холево-Хелстрома и приводит свою операциональную модель квантовых измерений в качестве примера применения этого метода. В ней участвует квантовая функция распределения вероятностей P q,p = Wψ * Wφ q,p. Здесь Wφ - квантовая функция распределения Вигнера состояния φ квантовой системы до измерения, Wψ - квантовая функция распределения Вигнера состояния ψ квантового фильтра до процедуры измерения. Известно, что свертка двух квантовых функций распределения Вигнера является положительно определенным распределением вероятностей на фазовом пространстве квантовой системы. Квантовая функция распределения Вигнера однозначно связана с правилом квантования Вейля, которое классической величине A q,p ставит в соответствие (псевдо) дифференциальный оператор OW A, символом которого является функция A q,p. В статье утверждается, что с квантовой функцией распределения Курышкина-Вудкевича связано правило квантования Курышкина, которое классической величине A q,p ставит в соответствие оператор наблюдаемой Oψ A с символом AG q,p = A * Φ q,p. Здесь Φ q,p = 2πℏ −3∕2 exp −ipq∕ℏ ψ q ˜ ψ p, где ˜ψ p - Фурье-образ функции состояния квантового фильтра ψ q

    Моменты наблюдаемых величин в модели квантовых измерений Курышкина-Вудкевича

    Get PDF
    In the frame of constructive Kuryshkin-Wodkiewicz model of quantum measurements theory problem of calculating measured moments of observables is considered. This problem is closely related to the problem of calculating dispersions of measured values of observables, examined in details in papers of V. Kuryshkin. Values of moments and dispersions of measured observables are uniquely determined by quantum distribution function of Kuryshkin- Wodkiewicz.В рамках конструктивной модели Курышкина Вудкевича теории квантовых измерений рассмотрена проблема вычисления измеренных моментов наблюдаемых величин. Данная проблема связана с проблемой вычисления дисперсии измеренных значений наблюдаемой, подробно рассмотренной в работах В. Курышкина. Значения моментов и дисперсии однозначно определяются квантовой функцией распределения Курышкина-Вудкевича

    Переходные вероятности в квантовой механике Курышкина

    Get PDF
    The method of calculating probabilities of radiation transitions in hydrogen-like atoms in quantum mechanics with nonnegative distribution function is proposed. Galerkin method using Sturmian functions of the hydrogen atom as basis functions allows to reduce the computations to algebraic operations with matrix elements calculated analitically.В работе предложен метод вычисления вероятностей радиационных переходов водородоподобного атома в квантовой механике с неотрицательной квантовой функцией распределения. Метод Галёркина со штурмовскими функциями атома водорода в качестве координатных функций позволяет свести вычисления к алгебраическим операциям с матричными элементами, которые вычисляются аналитически

    Модель квантовых измерений Курышкина-Вудкевича

    Get PDF
    We show the coincidence of K. Wodkiewicz operational probability distribution function and V. Kuryshkin quantum distribution function. The correspondence of both functions to L. Cohen time-frequency spectrogram is shown.We discuss in brief the connection of investigated distribution functions with statistical model of quantum measurement theory.В работе показано совпадение операциональной функции распределения вероятностей К. Вудкевича с квантовой функцией распределения В. Курышкина. Показано их соответствие частотно-временной спектрограмме Л. Коэна. Дано короткое обсуждение связи изучаемых функций распределения со статистической моделью квантовой теории измерений

    Experimental and theoretical investigation of the Preglow in ECRIS

    No full text
    International audienceA careful study of pulsed mode operation of the PHOENIX ECR ion source has clearly demonstrated the reality of an unexpected transient current peak occurring at the very beginning of the gas breakdown. This regime was named the Preglow, as an explicit reference to the classical Afterglow occurring at the microwave pulse end. After the transient Preglow peak, the plasma regime relaxes to the classical steady state one. Argon Preglow experiments performed at LPSC are presented. A theoretical 0-dimension model of ECR gas breakdown in a magnetic trap, developed at IAP RAS, is presented in detail. Results of the simulation are compared with the experimental Preglow peaks and discussed

    Progress report of investigations on gyrotron ECR ion source SMIS 37

    No full text
    A review of experimental investigations on ion production in plasma developed on SMIS 37 source at the Institute of Applied Physics of RAS (Nizhny Novgorod) is reported. Pulsed power gyrotron with emission frequency 37.5 GHz was used for plasma creation and heating in the simple magnetic mirror trap. Magnetic field with value up to 3.5 T was created by pulsed coils. Experiments were carried out in nitrogen as operating gas. Formation of multicharged ions in dense plasma in different regimes of plasma confinement was investigated. In this report we describe some investigations of instabilities of the plasma in the trap. Low frequency instabilities are analyzed basing on the results of plasma high-speed image registration. Also, whistler cyclotron instability was observed. Short pulses of accelerated electrons with energy about 10 keV are measured. Detected short pulses of microwave emission of the plasma characterize cyclotron instability too. Dense plasma of singly charged ions obtained in the trap with the plug magnetic field much less than resonant value. Flux of the plasma exceeds 0,1 A/cm2, electron temperature is about 20 eV. Such plasma seems to be interesting for surface modification

    Study of pulsed ECRIS plasma near breakdown: the Preglow

    No full text
    International audienceA careful study of pulsed mode operation of the PHOENIX ECR ion source has clearly demonstrated the reality of an unexpected transient current peak, occurring at the very beginning of the plasma breakdown. This regime was named the Preglow, as an explicit reference to the Afterglow occurring at the microwave pulse end. After the transient Preglow peak, the plasma regime relaxes to the classical steady state one. Argon Preglow experiments performed at LPSC are presented. A theoretical model of ECR gas breakdown in a magnetic trap, developed at IAP, showing satisfactory agreement with the experimental results is suggested

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore