4 research outputs found

    Lattice QCD Simulations in External Background Fields

    Full text link
    We discuss recent results and future prospects regarding the investigation, by lattice simulations, of the non-perturbative properties of QCD and of its phase diagram in presence of magnetic or chromomagnetic background fields. After a brief introduction to the formulation of lattice QCD in presence of external fields, we focus on studies regarding the effects of external fields on chiral symmetry breaking, on its restoration at finite temperature and on deconfinement. We conclude with a few comments regarding the effects of electromagnetic background fields on gluodynamics.Comment: 31 pages, 10 figures, minor changes and references added. To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Quark Matter in a Strong Magnetic Background

    Full text link
    In this chapter, we discuss several aspects of the theory of strong interactions in presence of a strong magnetic background. In particular, we summarize our results on the effect of the magnetic background on chiral symmetry restoration and deconfinement at finite temperature. Moreover, we compute the magnetic susceptibility of the chiral condensate and the quark polarization at zero temperature. Our theoretical framework is given by chiral models: the Nambu-Jona-Lasinio (NJL), the Polyakov improved NJL (or PNJL) and the Quark-Meson (QM) models. We also compare our results with the ones obtained by other groups.Comment: 34 pages, survey. To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Three-BMN correlation functions: Integrability vs. string field theory. One-loop mismatch

    No full text
    We compare calculations of the three-point correlation functions of BMN operators at the one-loop (next-to-leading) order in the scalar SU(2) sector from the integrability expression recently suggested by Gromov and Vieira, and from the string field theory expression based on the effective interaction vertex by Dobashi and Yoneya. A disagreement is found between the form-factors of the correlation functions in the one-loop contributions. The order-of-limits problem is suggested as a possible explanation of this discrepancy. © SISSA 2013.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore