2 research outputs found

    A self-consistent treatment of non-equilibrium spin torques in magnetic multilayers

    Full text link
    It is known that the transfer of spin angular momenta between current carriers and local moments occurs near the interface of magnetic layers when their moments are non-collinear. However, to determine the magnitude of the transfer, one should calculate the spin transport properties far beyond the interface regions. Based on the spin diffusion equation, we present a self-consistent approach to evaluate the spin torque for a number of layered structures. One of the salient features is that the longitudinal and transverse components of spin accumulations are inter-twined from one layer to the next, and thus, the spin torque could be significantly amplified with respect to treatments which concentrate solely on the transport at the interface due to the presence of the much longer longitudinal spin diffusion length. We conclude that bare spin currents do not properly estimate the spin angular momentum transferred between to the magnetic background; the spin transfer that occurs at interfaces should be self-consistently determined by embedding it in our globally diffuse transport calculations.Comment: 21 pages, 6 figure

    Localization corrections to the anomalous Hall effect in a ferromagnet

    Full text link
    We calculate the localization corrections to the anomalous Hall conductivity related to the contribution of spin-orbit scattering into the current vertex (side-jump mechanism). We show that in contrast to the ordinary Hall effect, there exists a nonvanishing localization correction to the anomalous Hall resistivity. The correction to the anomalous Hall conductivity vanishes in the case of side-jump mechanism, but is nonzero for the skew scattering. The total correction to the nondiagonal conductivity related to both mechanisms, does not compensate the correction to the diagonal conductivity.Comment: 7 pages with 7 figure
    corecore