721 research outputs found

    ERRATUM TO: Power corrections 1/Q21/Q^2 to parton sum rules for deep inelastic scattering from polarized targets

    Full text link
    We clarify conflicting results in the literature on coefficient functions in front of higher twist operators contributing to the parton sum rules for deep inelastic scattering from polarized targets. The necessary corrections do not affect our calculations of matrix elements, published in Phys.Lett.B242(1990)245, but change final estimates of the ∌1/Q2\sim 1/Q^2 contributions to Bjorken and Ellis--Jaffe sum rules.Comment: 2 pages, MPI-Ph/93-0

    Non-Critical Liouville String Escapes Constraints on Generic Models of Quantum Gravity

    Get PDF
    It has recently been pointed out that generic models of quantum gravity must contend with severe phenomenological constraints imposed by gravitational Cerenkov radiation, neutrino oscillations and the cosmic microwave background radiation. We show how the non-critical Liouville-string model of quantum gravity we have proposed escapes these constraints. It gives energetic particles subluminal velocities, obviating the danger of gravitational Cerenkov radiation. The effect on neutrino propagation is naturally flavour-independent, obviating any impact on oscillation phenomenology. Deviations from the expected black-body spectrum and the effects of time delays and stochastic fluctuations in the propagation of cosmic microwave background photons are negligible, as are their effects on observable spectral lines from high-redshift astrophysical objects.Comment: 15 pages LaTeX, 2 eps figures include

    Factorization and infrared properties of non-perturbative contributions to DIS structure functions

    Full text link
    In this paper we present a new derivation of the QCD factorization. We deduce the k_T- and collinear factorizations for the DIS structure functions by consecutive reductions of a more general theoretical construction. We begin by studying the amplitude of the forward Compton scattering off a hadron target, representing this amplitude as a set of convolutions of two blobs connected by the simplest, two-parton intermediate states. Each blob in the convolutions can contain both the perturbative and non-perturbative contributions. We formulate conditions for separating the perturbative and non-perturbative contributions and attributing them to the different blobs. After that the convolutions correspond to the QCD factorization. Then we reduce this totally unintegrated (basic) factorization first to the k_T- factorization and finally to the collinear factorization. In order to yield a finite expression for the Compton amplitude, the integration over the loop momentum in the basic factorization must be free of both ultraviolet and infrared singularities. This obvious mathematical requirement leads to theoretical restrictions on the non-perturbative contributions (parton distributions) to the Compton amplitude and the DIS structure functions related to the Compton amplitude through the Optical theorem. In particular, our analysis excludes the use of the singular factors x^{-a} (with a > 0) in the fits for the quark and gluon distributions because such factors contradict to the integrability of the basic convolutions for the Compton amplitude. This restriction is valid for all DIS structure functions in the framework of both the k_T- factorization and the collinear factorization if we attribute the perturbative contributions only to the upper blob.Comment: 19 pages, 6 figure

    Nonforward anomalous dimensions of Wilson operators in N=4 super-Yang-Mills theory

    Full text link
    We present the next-to-leading order results for universal non-forward anomalous dimensions of Wilson twist-2 operators in N=4 supersymmetric Yang-Mills theory. The whole calculation was performed using supersymmetric Ward identities derived in this paper together with already known QCD results and does not involve any additional calculation of diagrams. We also considered one particular limit of our result, which could potentially be interesting in the context of AdS/CFT correspondence.Comment: 15 pages, references added, typos corrected, version accepted in JHE

    Power Counting in the Soft-Collinear Effective Theory

    Full text link
    We describe in some detail the derivation of a power counting formula for the soft-collinear effective theory (SCET). This formula constrains which operators are required to correctly describe the infrared at any order in the Lambda_QCD/Q expansion (lambda expansion). The result assigns a unique lambda-dimension to graphs in SCET solely from vertices, is gauge independent, and can be applied independent of the process. For processes with an OPE the lambda-dimension has a correspondence with dynamical twist.Comment: 12 pages, 1 fig, journal versio

    η−ηâ€Č\eta-\eta^\prime mixing and the next-to-leading-order power correction

    Full text link
    The next-to-leading-order O(1/Q4)O(1/Q^4) power correction for ηγ\eta\gamma and ηâ€ČÎł\eta^\prime\gamma form factors are evaluated and employed to explore the η−ηâ€Č\eta-\eta^\prime mixing. The parameters of the two mixing angle scheme are extracted from the data for form factors, two photon decay widths and radiative J/ψJ/\psi decays. The χ2\chi^2 analysis gives the result: fη1=(1.16±0.06)fπ,fη8=(1.33±0.23)fπ,Ξ1=−9∘±3∘,Ξ8=−21.3∘±2.3∘f_{\eta_1}=(1.16\pm0.06)f_\pi, f_{\eta_8}=(1.33\pm0.23)f_\pi, \theta_1=-9^\circ\pm 3^\circ, \theta_8=-21.3^\circ\pm 2.3^\circ, where fη1(8)f_{\eta_{1(8)}} and Ξ1(8)\theta_{1(8)} are the decay constants and the mixing angles for the singlet (octet) state. In addition, we arrive at a stringent range for fηâ€Čc:−10f_{\eta^\prime}^c:-10 MeV≀fηâ€Čc≀−4\le f_{\eta^\prime}^c\le -4 MeV.Comment: 23 pages, 9 figures, To be publshied in Phys. Rev.

    Hard Scattering Factorization from Effective Field Theory

    Get PDF
    In this paper we show how gauge symmetries in an effective theory can be used to simplify proofs of factorization formulae in highly energetic hadronic processes. We use the soft-collinear effective theory, generalized to deal with back-to-back jets of collinear particles. Our proofs do not depend on the choice of a particular gauge, and the formalism is applicable to both exclusive and inclusive factorization. As examples we treat the pi-gamma form factor (gamma gamma* -> pi^0), light meson form factors (gamma* M -> M), as well as deep inelastic scattering (e- p -> e- X), Drell-Yan (p pbar -> X l+ l-), and deeply virtual Compton scattering (gamma* p -> gamma(*) p).Comment: 35 pages, 4 figures, typos corrected, journal versio

    Likelihood Functions for Supersymmetric Observables in Frequentist Analyses of the CMSSM and NUHM1

    Get PDF
    On the basis of frequentist analyses of experimental constraints from electroweak precision data, g-2, B physics and cosmological data, we investigate the parameters of the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking mass parameters, and a model with common non-universal Higgs masses (NUHM1). We present chi^2 likelihood functions for the masses of supersymmetric particles and Higgs bosons, as well as b to s gamma, b to mu mu and the spin-independent dark matter scattering cross section. In the CMSSM we find preferences for sparticle masses that are relatively light. In the NUHM1 the best-fit values for many sparticle masses are even slightly smaller, but with greater uncertainties. The likelihood functions for most sparticle masses are cut off sharply at small masses, in particular by the LEP Higgs mass constraint. Both in the CMSSM and the NUHM1, the coannihilation region is favoured over the focus-point region at about the 3-sigma level, largely but not exclusively because of g-2. Many sparticle masses are highly correlated in both the CMSSM and NUHM1, and most of the regions preferred at the 95% C.L. are accessible to early LHC running. Some slepton and chargino/neutralino masses should be in reach at the ILC. The masses of the heavier Higgs bosons should be accessible at the LHC and the ILC in portions of the preferred regions in the (M_A, tan beta) plane. In the CMSSM, the likelihood function for b to mu mu is peaked close to the Standard Model value, but much larger values are possible in the NUHM1. We find that values of the DM cross section > 10^{-10} pb are preferred in both the CMSSM and the NUHM1. We study the effects of dropping the g-2, b to s gamma, relic density and M_h constraints.Comment: 34 pages, 24 figure

    Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories

    Get PDF
    We present cosmological perturbations of kinetic components based on relativistic Boltzmann equations in the context of generalized gravity theories. Our general theory considers an arbitrary number of scalar fields generally coupled with the gravity, an arbitrary number of mutually interacting hydrodynamic fluids, and components described by the relativistic Boltzmann equations like massive/massless collisionless particles and the photon with the accompanying polarizations. We also include direct interactions among fluids and fields. The background FLRW model includes the general spatial curvature and the cosmological constant. We consider three different types of perturbations, and all the scalar-type perturbation equations are arranged in a gauge-ready form so that one can implement easily the convenient gauge conditions depending on the situation. In the numerical calculation of the Boltzmann equations we have implemented four different gauge conditions in a gauge-ready manner where two of them are new. By comparing solutions solved separately in different gauge conditions we can naturally check the numerical accuracy.Comment: 26 pages, 9 figures, revised thoroughly, to appear in Phys. Rev.

    The supersymmetric interpretation of the EGRET excess of diffuse Galactic gamma rays

    Full text link
    Recently it was shown that the excess of diffuse Galactic gamma rays above 1 GeV traces the Dark Matter halo, as proven by reconstructing the peculiar shape of the rotation curve of our Galaxy from the gamma ray excess. This can be interpreted as a Dark Matter annihilation signal. In this paper we investigate if this interpretation is consistent with Supersymmetry. It is found that the EGRET excess combined with all electroweak constraints is fully consistent with the minimal mSUGRA model for scalars in the TeV range and gauginos below 500 GeV.Comment: 11 pages, 6 figures, extended version with more figures, as accepted for publication in Phys. Letters
    • 

    corecore