54 research outputs found

    The Big Trip and Wheeler-DeWitt equation

    Full text link
    Of all the possible ways to describe the behavior of the universe that has undergone a big trip the Wheeler-DeWitt equation should be the most accurate -- provided, of course, that we employ the correct formulation. In this article we start by discussing the standard formulation introduced by Gonz\'alez-D\'iaz and Jimenez-Madrid, and show that it allows for a simple yet efficient method of the solution's generation, which is based on the Moutard transformation. Next, by shedding the unnecessary restrictions, imposed on aforementioned standard formulation we introduce a more general form of the Wheeler-DeWitt equation. One immediate prediction of this new formula is that for the universe the probability to emerge right after the big trip in a state with w=w0w=w_0 will be maximal if and only if w0=−1/3w_0=-1/3.Comment: accepted in Astrophysics and Space Scienc

    Multiple Λ\LambdaCDM cosmology with string landscape features and future singularities

    Full text link
    Multiple Λ\LambdaCDM cosmology is studied in a way that is formally a classical analog of the Casimir effect. Such cosmology corresponds to a time-dependent dark fluid model or, alternatively, to its scalar field presentation, and it motivated by the string landscape picture. The future evolution of the several dark energy models constructed within the scheme is carefully investigated. It turns out to be almost always possible to choose the parameters in the models so that they match the most recent and accurate astronomical values. To this end, several universes are presented which mimick (multiple) Λ\LambdaCDM cosmology but exhibit Little Rip, asymptotically de Sitter, or Type I, II, III, and IV finite-time singularity behavior in the far future, with disintegration of all bound objects in the cases of Big Rip, Little Rip and Pseudo-Rip cosmologies.Comment: LaTeX 11 pages, 10 figure

    An Infrared Divergence Problem in the cosmological measure theory and the anthropic reasoning

    Full text link
    An anthropic principle has made it possible to answer the difficult question of why the observable value of cosmological constant (Λ∌10−47\Lambda\sim 10^{-47} GeV4{}^4) is so disconcertingly tiny compared to predicted value of vacuum energy density ρSUSY∌1012\rho_{SUSY}\sim 10^{12} GeV4{}^4. Unfortunately, there is a darker side to this argument, as it consequently leads to another absurd prediction: that the probability to observe the value Λ=0\Lambda=0 for randomly selected observer exactly equals to 1. We'll call this controversy an infrared divergence problem. It is shown that the IRD prediction can be avoided with the help of a Linde-Vanchurin {\em singular runaway measure} coupled with the calculation of relative Bayesian probabilities by the means of the {\em doomsday argument}. Moreover, it is shown that while the IRD problem occurs for the {\em prediction stage} of value of Λ\Lambda, it disappears at the {\em explanatory stage} when Λ\Lambda has already been measured by the observer.Comment: 9 pages, RevTe

    Parameterization and Reconstruction of Quasi Static Universe

    Full text link
    We study a possibility of the fate of universe, in which there is neither the rip singularity, which results in the disintegration of bound systems, nor the endless expansion, instead the universe will be quasi static. We discuss the parameterization of the corresponding evolution and the reconstruction of the scalar field model. We find, with the parameterization consistent with the current observation, that the current universe might arrive at a quasi static phase after less than 20Gyr.Comment: minor changes and Refs. added, publish in EPJ

    Supermassive neutron stars in axion F(R) gravity

    No full text
    © 2020 The Author(s). We investigated realistic neutron stars in axion R2 gravity. The coupling between curvature and axion field φ is assumed in the simple form ~R2φ. For the axion mass in the range ma ~ 10-11-10-10 eV the solitonic core within neutron star and corresponding halo with size ~100 km can exist. Therefore the effective contribution of R2 term grows inside the star and it leads to change of star parameters (namely, mass, and radius). We obtained the increase of star mass independent from central density for wide range of masses. Therefore, maximal possible mass for given equation of state grows. At the same time, the star radius increases not so considerably in comparison with GR. Hence, our model may predict possible existence of supermassive compact stars with masses M ~2.2-2.3M⊙ and radii Rs ~11 km for realistic equation of state (we considered APR equation of state). In general relativity one can obtain neutron stars with such characteristics only for unrealistic, extremely stiff equations of state. Note that this increase of mass occurs due to change of solution for scalar curvature outside the star. In GR curvature drops to zero on star surface where ρ = p = 0. In the model underconsideration the scalar curvature dumps more slowly in comparison with vacuum R2 gravity due to axion 'galo' around the star

    An infrared divergence in the cosmological measure theory and the anthropic reasoning

    No full text
    An anthropic principle has made it possible to answer the difficult question of why the observable value of cosmological constant (Λ∌10−47 GeV4) is so disconcertingly tiny compared to the predicted value of vacuum energy density ρ SUSY∌1012 GeV4. Unfortunately, there is a darker side to this argument; being combined with the cosmic heat death scenario, it consequently leads to another absurd prediction: the probability of randomly selected observer observing Λ=0 ends up being exactly equal to 1. We shall call this controversy an infrared divergence problem. It is shown that the IRD prediction can be avoided with the help of a singular runaway measure coupled with the calculation of relative Bayesian probabilities by the means of the doomsday argument. Moreover, it is shown that while the IRD problem occurs for the prediction stage of value of Λ, it disappears at the explanatory stage when Λ has already been measured by the observer
    • 

    corecore