3 research outputs found

    Refraction at Media with Negative Refractive Index

    Full text link
    We show that an electromagnetic (EM) wave undergoes negative refraction at the interface between a positive and negative refractive index material. Finite difference time domain (FDTD) simulations are used to study the time evolution of an EM wave as it hits the interface. The wave is trapped temporarily at the interface and after a long time, the wave front moves eventually in the negative direction. This explains why causality and speed of light are not violated in spite of the negative refraction always present in a negative index material.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let

    Computer Simulations of Solar Energy Systems

    No full text

    FDTD simulation of the GPR signal for preventing the risk of accidents due to pavement damages

    No full text
    It is well known that road safety issues are closely dependent on both pavement structural damages and surface unevenness, whose occurrence is often related to ineffective pavement asset management. The evaluation of road pavement operability is traditionally carried out through distress identification manuals on the basis of standardized comprehensive indexes, as a result of visual inspections or measurements, wherein the failure causes can be partially detected. In this regard, ground-penetrating radar (GPR) has proven to be over the past decades an effective and efficient technique to enable better management of pavement assets and better diagnosis of the causes of pavement failures. In this study, one of the main causes (i.e. subgrade failures) of surface damage is analyzed through finite-difference time-domain (FDTD) simulation of the GPR signal. The GprMax 2D numerical simulator for GPR is used on three different types of flexible pavement to retrieve the numerical solution of Maxwell's equations in the time domain. Results show the high potential of GPR in detecting the causes of such damage
    corecore