3 research outputs found

    Leptons and photons at the LHC: cascades through spinless adjoints

    Get PDF
    We study the hadron collider phenomenology of (1,0) Kaluza-Klein modes along two universal extra dimensions compactified on the chiral square. Cascade decays of spinless adjoints proceed through tree-level 3-body decays involving leptons as well as one-loop 2-body decays involving photons. As a result, spectacular events with as many as six charged leptons, or one photon plus four charged leptons are expected to be observed at the LHC. Unusual events with relatively large branching fractions include three leptons of same charge plus one lepton of opposite charge, or one photon plus two leptons of same charge. We estimate the current limit from the Tevatron on the compactification scale, set by searches for trilepton events, to be around 270 GeV.Comment: 33+1 pages, 14 figure

    Spontaneous Lorentz Violation via QED with Non-Exact Gauge Invariance

    Full text link
    We reconsider an alternative theory of the QED with the photon as a massless vector Nambu-Goldstone boson and show that the underlying spontaneous Lorentz violation caused by the vector field vacuum expectation value, while being superficial in gauge invariant theory, becomes physically significant in the QED with a tiny gauge non-invariance. This leads, through special dispersion relations appearing for charged fermions, to a new class of phenomena which could be of distinctive observational interest in particle physics and astrophysics. They include a significant change in the GZK cutoff for UHE cosmic-ray nucleons, stability of high-energy pions and W bosons, modification of nucleon beta decays, and some others.Comment: 15 pages, to appear in Eur.Phys.J.

    Standard Model with Partial Gauge Invariance

    Full text link
    We argue that an exact gauge invariance may disable some generic features of the Standard Model which could otherwise manifest themselves at high energies. One of them might be related to the spontaneous Lorentz invariance violation (SLIV) which could provide an alternative dynamical approach to QED and Yang-Mills theories with photon and non-Abelian gauge fields appearing as massless Nambu-Goldstone bosons. To see some key features of the new physics expected we propose partial rather than exact gauge invariance in an extended SM framework. This principle applied, in some minimal form, to the weak hypercharge gauge field B_{mu} and its interactions leads to SLIV with B field components appearing as the massless Nambu-Goldstone modes, and provides a number of distinctive Lorentz beaking effects. Being naturally suppressed at low energies they may become detectable in high energy physics and astrophysics. Some of the most interesting SLIV processes are considered in significant detail.Comment: 32 pages, extended version, to appear in Eur.Phys.J.
    corecore