663 research outputs found
Earthquake Hazard Analysis for Commercial Buildings in Memphis
https://deepblue.lib.umich.edu/bitstream/2027.42/154133/1/39015094008086.pd
The evolution of public health genomics: Exploring its past, present, and future
Public health genomics has evolved to responsibly integrate advancements in genomics into the fields of personalized medicine and public health. Appropriate, effective and sustainable integration of genomics into healthcare requires an organized approach. This paper outlines the history that led to the emergence of public health genomics as a distinguishable field. In addition, a range of activities are described that illustrate how genomics can be incorporated into public health practice. Finally, it presents the evolution of public health genomics into the new era of “precision public health.
Global stability for a class of virus models with CTL immune response and antigenic variation
We study the global stability of a class of models for in-vivo virus
dynamics, that take into account the CTL immune response and display antigenic
variation. This class includes a number of models that have been extensively
used to model HIV dynamics. We show that models in this class are globally
asymptotically stable, under mild hypothesis, by using appropriate Lyapunov
functions. We also characterise the stable equilibrium points for the entire
biologically relevant parameter range. As a byproduct, we are able to determine
what is the diversity of the persistent strains.Comment: 15 page
Langevin Simulation of Thermally Activated Magnetization Reversal in Nanoscale Pillars
Numerical solutions of the Landau-Lifshitz-Gilbert micromagnetic model
incorporating thermal fluctuations and dipole-dipole interactions (calculated
by the Fast Multipole Method) are presented for systems composed of nanoscale
iron pillars of dimension 9 nm x 9 nm x 150 nm. Hysteresis loops generated
under sinusoidally varying fields are obtained, while the coercive field is
estimated to be 1979 14 Oe using linear field sweeps at T=0 K. Thermal
effects are essential to the relaxation of magnetization trapped in a
metastable orientation, such as happens after a rapid reversal of an external
magnetic field less than the coercive value. The distribution of switching
times is compared to a simple analytic theory that describes reversal with
nucleation at the ends of the nanomagnets. Results are also presented for
arrays of nanomagnets oriented perpendicular to a flat substrate. Even at a
separation of 300 nm, where the field from neighboring pillars is only 1
Oe, the interactions have a significant effect on the switching of the magnets.Comment: 19 pages RevTeX, including 12 figures, clarified discussion of
numerical technique
Game Theoretical Interactions of Moving Agents
Game theory has been one of the most successful quantitative concepts to
describe social interactions, their strategical aspects, and outcomes. Among
the payoff matrix quantifying the result of a social interaction, the
interaction conditions have been varied, such as the number of repeated
interactions, the number of interaction partners, the possibility to punish
defective behavior etc. While an extension to spatial interactions has been
considered early on such as in the "game of life", recent studies have focussed
on effects of the structure of social interaction networks.
However, the possibility of individuals to move and, thereby, evade areas
with a high level of defection, and to seek areas with a high level of
cooperation, has not been fully explored so far. This contribution presents a
model combining game theoretical interactions with success-driven motion in
space, and studies the consequences that this may have for the degree of
cooperation and the spatio-temporal dynamics in the population. It is
demonstrated that the combination of game theoretical interactions with motion
gives rise to many self-organized behavioral patterns on an aggregate level,
which can explain a variety of empirically observed social behaviors
Fast variability from black-hole binaries
Currently available information on fast variability of the X-ray emission
from accreting collapsed objects constitutes a complex phenomenology which is
difficult to interpret. We review the current observational standpoint for
black-hole binaries and survey models that have been proposed to interpret it.
Despite the complex structure of the accretion flow, key observational
diagnostics have been identified which can provide direct access to the
dynamics of matter motions in the close vicinity of black holes and thus to the
some of fundamental properties of curved spacetimes, where strong-field general
relativistic effects can be observed.Comment: 20 pages, 11 figures. Accepted for publication in Space Science
Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI
"The Physics of Accretion onto Black Holes" (Springer Publisher
-period optical potentials
A Raman configuration of counterpropagating traveling wave fields, one of
which is polarized and the other polarized, is
shown to lead to optical potentials having periodicity.
Such optical potentials may be used to construct optical lattices having periodicity. Using numerical diagonalization, we obtain the
optical potentials for Rb atoms.Comment: 3 pages, 2 figure
The Outer Tracker Detector of the HERA-B Experiment Part I: Detector
The HERA-B Outer Tracker is a large system of planar drift chambers with
about 113000 read-out channels. Its inner part has been designed to be exposed
to a particle flux of up to 2.10^5 cm^-2 s^-1, thus coping with conditions
similar to those expected for future hadron collider experiments. 13
superlayers, each consisting of two individual chambers, have been assembled
and installed in the experiment. The stereo layers inside each chamber are
composed of honeycomb drift tube modules with 5 and 10 mm diameter cells.
Chamber aging is prevented by coating the cathode foils with thin layers of
copper and gold, together with a proper drift gas choice. Longitudinal wire
segmentation is used to limit the occupancy in the most irradiated detector
regions to about 20 %. The production of 978 modules was distributed among six
different laboratories and took 15 months. For all materials in the fiducial
region of the detector good compromises of stability versus thickness were
found. A closed-loop gas system supplies the Ar/CF4/CO2 gas mixture to all
chambers. The successful operation of the HERA-B Outer Tracker shows that a
large tracker can be efficiently built and safely operated under huge radiation
load at a hadron collider.Comment: 28 pages, 14 figure
The Outer Tracker Detector of the HERA-B Experiment. Part II: Front-End Electronics
The HERA-B Outer Tracker is a large detector with 112674 drift chamber
channels. It is exposed to a particle flux of up to 2x10^5/cm^2/s thus coping
with conditions similar to those expected for the LHC experiments. The
front-end readout system, based on the ASD-8 chip and a customized TDC chip, is
designed to fulfil the requirements on low noise, high sensitivity, rate
tolerance, and high integration density. The TDC system is based on an ASIC
which digitizes the time in bins of about 0.5 ns within a total of 256 bins.
The chip also comprises a pipeline to store data from 128 events which is
required for a deadtime-free trigger and data acquisition system. We report on
the development, installation, and commissioning of the front-end electronics,
including the grounding and noise suppression schemes, and discuss its
performance in the HERA-B experiment
Active Brownian Motion Models and Applications to Ratchets
We give an overview over recent studies on the model of Active Brownian
Motion (ABM) coupled to reservoirs providing free energy which may be converted
into kinetic energy of motion. First, we present an introduction to a general
concept of active Brownian particles which are capable to take up energy from
the source and transform part of it in order to perform various activities. In
the second part of our presentation we consider applications of ABM to ratchet
systems with different forms of differentiable potentials. Both analytical and
numerical evaluations are discussed for three cases of sinusoidal,
staircase-like and Mateos ratchet potentials, also with the additional loads
modeled by tilted potential structure. In addition, stochastic character of the
kinetics is investigated by considering perturbation by Gaussian white noise
which is shown to be responsible for driving the directionality of the
asymptotic flux in the ratchet. This \textit{stochastically driven
directionality} effect is visualized as a strong nonmonotonic dependence of the
statistics of the right versus left trajectories of motion leading to a net
current of particles. Possible applications of the ratchet systems to molecular
motors are also briefly discussedComment: 12 pages, 17 figure
- …