122 research outputs found
A generalization of the binary Preparata code
AbstractA classical binary Preparata code P2(m) is a nonlinear (2m+1,22(2m-1-m),6)-code, where m is odd. It has a linear representation over the ring Z4 [Hammons et al., The Z4-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory 40(2) (1994) 301–319]. Here for any q=2l>2 and any m such that (m,q-1)=1 a nonlinear code Pq(m) over the field F=GF(q) with parameters (q(Δ+1),q2(Δ-m),d⩾3q), where Δ=(qm-1)/(q-1), is constructed. If d=3q this set of parameters generalizes that of P2(m). The equality d=3q is established in the following cases: (1) for a series of initial admissible values q and m such that qm<2100; (2) for m=3,4 and any admissible q, and (3) for admissible q and m such that there exists a number m1 with m1|m and d(Pq(m1))=3q. We apply the approach of [Nechaev and Kuzmin, Linearly presentable codes, Proceedings of the 1996 IEEE International Symposium Information Theory and Application Victoria, BC, Canada 1996, pp. 31–34] the code P is a Reed–Solomon representation of a linear over the Galois ring R=GR(q2,4) code P dual to a linear code K with parameters near to those of generalized linear Kerdock code over R
Satellite observations of plasma-wave disturbances induced by high-power radio emission from the NWC transmitter
In this work, we present the results of in-situ measurements of the characteristics of electromagnetic and plasma disturbances in the ionospheric region modified by high-power emission from the NWC transmitter, which were obtained using the onboard equipment of the French microsatellite DEMETER. It is shown that under the influence of VLF emissions from the ground-based transmitters, artificial plasma-wave channels with typical transverse scales of about 1000 km can be formed in the ionospheric plasma.Представлены результаты непосредственных (in-situ) измерений бортовой аппаратурой французского микроспутника DEMETER характеристик электромагнитных и плазменных возмущений в модифицированной мощным излучением передатчика NWC области ионосферы. Отмечено, что при воздействии ОНЧ-излучения наземных передатчиков в ионосферной плазме формируются искусственные плазменно-волновые каналы с характерным поперечным масштабом ~ 1000 км.Представлені результати безпосередніх (in-situ) вимірювань бортовою апаратурою французького мікросупутника DEMETER характеристик електромагнітних і плазмових збурень у модифікованій потужним випромінюванням передавача NWC області іоносфери. Відзначено, що при впливі ОНЧ- випромінювання наземних передавачів в іоносферній плазмі формуються штучні плазмово-хвильові канали з характерним поперечним масштабом ~ 1000 км
Magnetic Reversal on Vicinal Surfaces
We present a theoretical study of in-plane magnetization reversal for vicinal
ultrathin films using a one-dimensional micromagnetic model with
nearest-neighbor exchange, four-fold anisotropy at all sites, and two-fold
anisotropy at step edges. A detailed "phase diagram" is presented that catalogs
the possible shapes of hysteresis loops and reversal mechanisms as a function
of step anisotropy strength and vicinal terrace length. The steps generically
nucleate magnetization reversal and pin the motion of domain walls. No sharp
transition separates the cases of reversal by coherent rotation and reversal by
depinning of a ninety degree domain wall from the steps. Comparison to
experiment is made when appropriate.Comment: 12 pages, 8 figure
Topological Defects as Seeds for Eternal Inflation
We investigate the global structure of inflationary universe both by
analytical methods and by computer simulations of stochastic processes in the
early Universe. We show that the global structure of the universe depends
crucially on the mechanism of inflation. In the simplest models of chaotic
inflation the Universe looks like a sea of thermalized phase surrounding
permanently self-reproducing inflationary domains. In the theories where
inflation occurs near a local extremum of the effective potential corresponding
to a metastable state, the Universe looks like de Sitter space surrounding
islands of thermalized phase. A similar picture appears even if the state is unstable but the effective potential has a discrete symmetry . In this case the Universe becomes divided into domains containing
different phases. These domains will be separated from each other by domain
walls. However, unlike ordinary domain walls, these domain walls will inflate,
and their thickness will exponentially grow. In the theories with continuous
symmetries inflation generates exponentially expanding strings and monopoles
surrounded by thermalized phase. Inflating topological defects will be stable,
and they will unceasingly produce new inflating topological defects. This means
that topological defects may play a role of indestructible seeds for eternal
inflation.Comment: 21 pages, 17 figures (not included), Stanford University preprint
SU--ITP--94--
From the Big Bang Theory to the Theory of a Stationary Universe
We consider chaotic inflation in the theories with the effective potentials
phi^n and e^{\alpha\phi}. In such theories inflationary domains containing
sufficiently large and homogeneous scalar field \phi permanently produce new
inflationary domains of a similar type. We show that under certain conditions
this process of the self-reproduction of the Universe can be described by a
stationary distribution of probability, which means that the fraction of the
physical volume of the Universe in a state with given properties (with given
values of fields, with a given density of matter, etc.) does not depend on
time, both at the stage of inflation and after it. This represents a strong
deviation of inflationary cosmology from the standard Big Bang paradigm. We
compare our approach with other approaches to quantum cosmology, and illustrate
some of the general conclusions mentioned above with the results of a computer
simulation of stochastic processes in the inflationary Universe.Comment: No changes to the file, but original figures are included. They
substantially help to understand this paper, as well as eternal inflation in
general, and what is now called the "multiverse" and the "string theory
landscape." High quality figures can be found at
http://www.stanford.edu/~alinde/LLMbigfigs
Tensor Correlations Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV
over a wide kinematic range. We identified spectator correlated pp and pn
nucleon pairs using kinematic cuts and measured their relative and total
momentum distributions. This is the first measurement of the ratio of pp to pn
pairs as a function of pair total momentum, . For pair relative
momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low and
rises to approximately 0.5 at large . This shows the dominance of
tensor over central correlations at this relative momentum.Comment: 4 pages, 4 figures, submitted to PR
Measurement of the nuclear multiplicity ratio for hadronization at CLAS
The influence of cold nuclear matter on lepto-production of hadrons in
semi-inclusive deep inelastic scattering is measured using the CLAS detector in
Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the
multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a
function of the fractional virtual photon energy transferred to the
and the transverse momentum squared of the . We find that the
multiplicity ratios for are reduced in the nuclear medium at high
and low , with a trend for the transverse momentum to be
broadened in the nucleus for large .Comment: Submitted to Phys. Lett.
Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive production
We present studies of single-spin asymmetries for neutral pion
electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV
polarized electrons from an unpolarized hydrogen target, using the CEBAF Large
Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator
Facility. A substantial amplitude has been measured in the
distribution of the cross section asymmetry as a function of the azimuthal
angle of the produced neutral pion. The dependence of this amplitude
on Bjorken and on the pion transverse momentum is extracted with
significantly higher precision than previous data and is compared to model
calculations.Comment: to be submitted PL
A Bayesian analysis of pentaquark signals from CLAS data
We examine the results of two measurements by the CLAS collaboration, one of
which claimed evidence for a pentaquark, whilst the other found no
such evidence. The unique feature of these two experiments was that they were
performed with the same experimental setup. Using a Bayesian analysis we find
that the results of the two experiments are in fact compatible with each other,
but that the first measurement did not contain sufficient information to
determine unambiguously the existence of a . Further, we suggest a
means by which the existence of a new candidate particle can be tested in a
rigorous manner.Comment: 5 pages, 3 figure
First measurement of direct photoproduction on the proton
We report on the results of the first measurement of exclusive
meson photoproduction on protons for GeV and GeV. Data were collected with the CLAS detector at the Thomas
Jefferson National Accelerator Facility. The resonance was detected via its
decay in the channel by performing a partial wave analysis of the
reaction . Clear evidence of the meson
was found in the interference between and waves at GeV. The -wave differential cross section integrated in the mass range of
the was found to be a factor of 50 smaller than the cross section
for the meson. This is the first time the meson has been
measured in a photoproduction experiment
- …