10 research outputs found

    Architectonics of a bacterial flagellin filament subunit

    Get PDF
    AbstractFlagellins of two Escherichia coli strains and their tryptic fragments were studied by different methods. Probabilities of secondary structure formation were also calculated for all flagellins with a known primary structure. The obtained data permit one to suggest a model for the flagellin molecule consisting of a central part responsible for antigenic properties and terminals responsible for polymerization. The central part is variable in length from a few amino acid residues to three-four hundred depending on the bacterial species. The terminal parts consist of about 160 amino acid residues from the N-end and 100 from the C-end

    G.O.2: Mutations in LMOD3 cause severe nemaline myopathy by disrupting thin filament organisation in skeletal muscle

    No full text
    Nemaline myopathy (NM) is a disorder of the skeletal muscle thin filament characterised by muscle dysfunction and electron-dense protein accumulations (nemaline bodies). Pathogenic mutations have been described in nine genes to date, but the genetic basis remains unknown in many cases. We used whole exome sequencing (WES) in two families with NM and subsequent gene sequencing in over 540 additional genetically unresolved NM patients to identify and characterise a new genetic cause of NM. We developed a knock-down zebrafish model of this condition and used immunohistochemistry, western blotting, single-fibre contractility studies and recombinant protein studies to characterise the expression, localisation and biochemical functions of the new disease-related protein. We identified homozygous or compound heterozygous variants in LMOD3, which encodes leiomodin-3 (Lmod3) in 21 patients from 14 families. Affected individuals had severe generalised weakness and hypotonia, and most affected individuals died in the neonatal period. We demonstrated that Lmod3 is expressed from early muscle differentiation, localises to thin filaments with enrichment at the pointed ends, and has strong actin nucleating activity. Loss of Lmod3 in patient muscle results in shortening and disorganisation of thin filaments. Knockdown of lmod3 in the zebrafish replicates this phenotype. These findings define a new genetic subtype of congenital myopathy and demonstrate an essential, previously unrecognised role for Lmod3 in the regulation of sarcomeric thin filaments in skeletal muscle
    corecore