14 research outputs found
On the spherical-axial transition in supernova remnants
A new law of motion for supernova remnant (SNR) which introduces the quantity
of swept matter in the thin layer approximation is introduced. This new law of
motion is tested on 10 years observations of SN1993J. The introduction of an
exponential gradient in the surrounding medium allows to model an aspherical
expansion. A weakly asymmetric SNR, SN1006, and a strongly asymmetric SNR,
SN1987a, are modeled. In the case of SN1987a the three observed rings are
simulated.Comment: 19 figures and 14 pages Accepted for publication in Astrophysics &
Space Science in the year 201
Time-Dependent Models for a decade of SN 1993J
A classical and a relativistic law of motion for a supernova remnant (SNR)
are deduced assuming an inverse power law behavior for the density of the
interstellar medium and applying the thin layer approximation. A third equation
of motion is found in the framework of relativistic hydrodynamics with
pressure, applying momentum conservation. These new formulas are calibrated
against a decade of observations of \snr. The existing knowledge of the
diffusive processes of ultrarelativistic electrons is reviewed in order to
explain the behavior of the `U' shaped profile of intensity versus distance
from the center of SN 1993J.Comment: 20 pages 19 figures, Accepted for pubblication in Astrophysics and
Space Science 201
The Physics of turbulent and dynamically unstable Herbig-Haro jets
The overall properties of the Herbig-Haro objects such as centerline
velocity, transversal profile of velocity, flow of mass and energy are
explained adopting two models for the turbulent jet. The complex shapes of the
Herbig-Haro objects, such as the arc in HH34 can be explained introducing the
combination of different kinematic effects such as velocity behavior along the
main direction of the jet and the velocity of the star in the interstellar
medium. The behavior of the intensity or brightness of the line of emission is
explored in three different cases : transversal 1D cut, longitudinal 1D cut and
2D map. An analytical explanation for the enhancement in intensity or
brightness such as usually modeled by the bow shock is given by a careful
analysis of the geometrical properties of the torus.Comment: 17 pages, 10 figures. Accepted for publication in Astrophysics &
Spac
Circumstellar interaction in supernovae in dense environments - an observational perspective
In a supernova explosion, the ejecta interacting with the surrounding
circumstellar medium (CSM) give rise to variety of radiation. Since CSM is
created from the mass lost from the progenitor star, it carries footprints of
the late time evolution of the star. This is one of the unique ways to get a
handle on the nature of the progenitor star system. Here, I will focus mainly
on the supernovae (SNe) exploding in dense environments, a.k.a. Type IIn SNe.
Radio and X-ray emission from this class of SNe have revealed important
modifications in their radiation properties, due to the presence of high
density CSM. Forward shock dominance of the X-ray emission, internal free-free
absorption of the radio emission, episodic or non-steady mass loss rate,
asymmetry in the explosion seem to be common properties of this class of SNe.Comment: Fixed minor typos. 31 pages, 9 figures, accepted for publication in
Space Science Reviews. Chapter in International Space Science Institute
(ISSI) Book on "Supernovae" to be published in Space Science Reviews by
Springe