35 research outputs found
Duality Invariance of Cosmological Perturbation Spectra
I show that cosmological perturbation spectra produced from quantum
fluctuations in massless or self-interacting scalar fields during an
inflationary era remain invariant under a two parameter family of
transformations of the homogeneous background fields. This relates slow-roll
inflation models to solutions which may be far from the usual slow-roll limit.
For example, a scale-invariant spectrum of perturbations in a minimally
coupled, massless field can be produced by an exponential expansion with
, or by a collapsing universe with .Comment: 5 pages, Latex with Revtex. Hamiltonian formulation added and
discussion expanded. Version to appear in Phys Rev
Quintessence Restrictions on Negative Power and Condensate Potentials
We study the cosmological evolution of scalar fields that arise from a phase
transition at some energy scale \Lm_c. We focus on negative power potentials
given by V=c\Lm_c^{4+n}\phi^{-n} and restrict the cosmological viable values
of \Lm_c and . We make a complete analysis of and impose
conditions on the different cosmological parameters. The cosmological
observations ruled out models where the scalar field has reached its attractor
solution. For models where this is not the case, the analytic approximated
solutions are not good enough to determine whether a specific model is
phenomenologically viable or not and the full differential equations must be
numerically solved. The results are not fine tuned since a change of 45% on the
initial conditions does not spoil the final results. We also determine the
values of that give a condensation scale \Lm_c consistent with
gauge coupling unification, leaving only four models that satisfy unification
and SN1a constraints.Comment: 15 pages, LaTeX, 8 Figures. Minor changes in text, a discussion on
initial conditions added (accepted in Phys.Rev.D
Particle physics models of inflation
Inflation models are compared with observation on the assumption that the
curvature perturbation is generated from the vacuum fluctuation of the inflaton
field. The focus is on single-field models with canonical kinetic terms,
classified as small- medium- and large-field according to the variation of the
inflaton field while cosmological scales leave the horizon. Small-field models
are constructed according to the usual paradigm for beyond Standard Model
physicsComment: Based on a talk given at the 22nd IAP Colloquium, ``Inflation +25'',
Paris, June 2006 Curve omitted from final Figur
On the degree of scale invariance of inflationary perturbations
Many, if not most, inflationary models predict the power-law index of the
spectrum of density perturbations is close to one, though not precisely equal
to one, |n-1| \sim O(0.1), implying that the spectrum of density perturbations
is nearly, but not exactly, scale invariant. Some models allow n to be
significantly less than one (n \sim 0.7); a spectral index significantly
greater than one is more difficult to achieve. We show that n \approx 1 is a
consequence of the slow-roll conditions for inflation and ``naturalness,'' and
thus is a generic prediction of inflation. We discuss what is required to
deviate significantly from scale invariance, and then show, by explicit
construction, the existence of smooth potentials that satisfy all the
conditions for successful inflation and give as large as 2.Comment: 7 pages, 2 figures, submitted to Phys. Rev.
Decomposition and nutrient release of leguminous plants in coffee agroforestry systems.
Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and
Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and(lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants
Transition from decelerated to accelerated cosmic expansion in braneworld universes
Braneworld theory provides a natural setting to treat, at a classical level,
the cosmological effects of vacuum energy. Non-static extra dimensions can
generally lead to a variable vacuum energy, which in turn may explain the
present accelerated cosmic expansion. We concentrate our attention in models
where the vacuum energy decreases as an inverse power law of the scale factor.
These models agree with the observed accelerating universe, while fitting
simultaneously the observational data for the density and deceleration
parameter. The redshift at which the vacuum energy can start to dominate
depends on the mass density of ordinary matter. For Omega = 0.3, the transition
from decelerated to accelerated cosmic expansion occurs at z approx 0.48 +/-
0.20, which is compatible with SNe data. We set a lower bound on the
deceleration parameter today, namely q > - 1 + 3 Omega/2, i.e., q > - 0.55 for
Omega = 0.3. The future evolution of the universe crucially depends on the time
when vacuum starts to dominate over ordinary matter. If it dominates only
recently, at an epoch z < 0.64, then the universe is accelerating today and
will continue that way forever. If vacuum dominates earlier, at z > 0.64, then
the deceleration comes back and the universe recollapses at some point in the
distant future. In the first case, quintessence and Cardassian expansion can be
formally interpreted as the low energy limit of our model, although they are
entirely different in philosophy. In the second case there is no correspondence
between these models and ours.Comment: In V2 typos are corrected and one reference is added for section 1.
To appear in General Relativity and Gravitatio
Inflation at Low Scales: General Analysis and a Detailed Model
Models of inflationary cosmology based on spontaneous symmetry breaking
typically suffer from the shortcoming that the symmetry breaking scale is
driven to nearly the Planck scale by observational constraints. In this paper
we investigate inflationary potentials in a general context, and show that this
difficulty is characteristic only of potentials dominated near their
maxima by terms of order . We find that potentials dominated by terms
of order with \hbox{} can satisfy observational constraints at
an arbitrary symmetry breaking scale. Of particular interest, the spectral
index of density fluctuations is shown to depend only on the order of the
lowest non-vanishing derivative of near the maximum. This result is
illustrated in the context of a specific model, with a broken
symmetry, in which the potential is generated by gauge boson loops.Comment: Submitted to Phys. Rev. D. 32 Pages, REVTeX. No figure
Running of the Scalar Spectral Index from Inflationary Models
The scalar spectral index n is an important parameter describing the nature
of primordial density perturbations. Recent data, including that from the WMAP
satellite, shows some evidence that the index runs (changes as a function of
the scale k at which it is measured) from n>1 (blue) on long scales to n<1
(red) on short scales. We investigate the extent to which inflationary models
can accomodate such significant running of n. We present several methods for
constructing large classes of potentials which yield a running spectral index.
We show that within the slow-roll approximation, the fact that n-1 changes sign
from blue to red forces the slope of the potential to reach a minimum at a
similar field location. We also briefly survey the running of the index in a
wider class of inflationary models, including a subset of those with
non-minimial kinetic terms.Comment: 39 pages, 4 figures, references adde
An inflation model with large variations in spectral index
Recent fits of cosmological parameters by the Wilkinson Microwave Anisotropy
Probe (WMAP) measurement favor a primordial scalar spectrum with varying index.
This result, if stands, could severely constrain inflation model buildings.
Most extant slow-roll inflation models allow for only a tiny amount of scale
variations in the spectrum. We propose in this paper an extra-dimensional
inflation model which is natural theoretically and can generate the required
variations of the spectral index as implied by the WMAP for suitable choices of
parameters.Comment: 5 pages, 3 figures, REVTeX 4. Comments on low CMB quadrupoles added;
Version accepted for publication in Phys. Rev.