2 research outputs found
Entropy Analysis of Darcy-Forchheimer Model of Prandtl Nanofluid over a Curved Stretching Sheet and Heat Transfer Optimization by ANOVA-Taguchi Technique
Darcy-Forchheimer model has been used to consider the mathematical and statistical aspects of Prandtl nanofluid flow on a stretched curvy geometry, with homogenic-heterogenic reactions, nonlinear radiation, exponential heat, Joule heating, velocity slip, and convective heat conditions. An account of entropy significance has been given to boost the applicability of the study. The 4-5th ordered numerical tool, Runge-Kutta-Fehlberg, has been employed to establish the plots for the considered flow. ANOVA and Taguchi optimisation technique is used to obtain the optimal condition in enhancing the heat transfer rate for modelled mathematical problem. Here, the study reveals that the increasing homo-heterogenic strength parameters foster the concentration profile. The study also found that the thermal curves are positively affected by the radiation parameter and the temperature differential parameter. In addition to this, graphical portraits of isotherms and streamlines have been given to characterise the flow and heat pattern. Taguchi method reveal that first level of Prandtl number, magnetic parameter, Weissenberg number, heat source parameter and third level of curvature parameter, produce maximum Nusselt number. Heat source parameter has large contribution of about 49.45% among the other parameters and Prandtl number has the least contribution of about 1.4% for optimisation
Empirical study for Nusselt number optimization for the flow using ANOVA and Taguchi method
ANOVA and Taguchi is an optimization tool used to find the optimal combination to achieve the highest heat transmission rate for a Casson-Carreau nanofluid flow over a curved surface. Exponentially generating heat, thermal radiation, Joule heating, chemical reaction along with velocity slip, and Stefan blowing peripheral conditions are employed for the current investigation. The rate of heat and mass transmission has been analyzed using the Cattaneo-Christov duplexed diffusion model. Entropy synthesis in the fluid flow system is also planned for the research. The graphs of solutions to the topic under consideration have been compiled by a tool called the Runge-Kutta-Fehlberg scheme. According to the outcomes of the present study, when thermal and solutal relaxation parameters are increased, the corresponding thermal and solutal profiles decrease. Both the speed and concentration panels benefit from the Stefan blowing parameter. The Nusselt number falls when Eckert number and Prandtl number increase. When the velocity slip factor is enhanced, the velocity has slowed down, while a rise in the second-order velocity slip factor encourages the same. The Taguchi optimization method has disclosed that the highest signal-to-noise ratio is attained when the magnetic parameter is 0.7, the thermophoresis parameter is 0.05, the Prandtl number is 7, the Eckert number is 0.06, and the thermal relaxation parameter is 0.05. Thus, the maximum heat transfer rate obtained is 2.75354. The thermophoresis parameter has a huge contribution of about 93.83%, whereas the thermal relaxation parameter has the least contribution, i.e., 0.03%, on heat transport rate
