572 research outputs found
Is the classical Bukhvostov-Lipatov model integrable? A Painlev\'e analysis
In this work we apply the Weiss, Tabor and Carnevale integrability criterion
(Painlev\'e analysis) to the classical version of the two dimensional
Bukhvostov-Lipatov model. We are led to the conclusion that the model is not
integrable classically, except at a trivial point where the theory can be
described in terms of two uncoupled sine-Gordon models
Effective lattice theories for Polyakov loops
We derive effective actions for SU(2) Polyakov loops using inverse Monte
Carlo techniques. In a first approach, we determine the effective couplings by
requiring that the effective ensemble reproduces the single-site distribution
of the Polyakov loops. The latter is flat below the critical temperature
implying that the (untraced) Polyakov loop is distributed uniformly over its
target space, the SU(2) group manifold. This allows for an analytic
determination of the Binder cumulant and the distribution of the mean-field,
which turns out to be approximately Gaussian. In a second approach, we employ
novel lattice Schwinger-Dyson equations which reflect the SU(2) x SU(2)
invariance of the functional Haar measure. Expanding the effective action in
terms of SU(2) group characters makes the numerics sufficiently stable so that
we are able to extract a total number of 14 couplings. The resulting action is
short-ranged and reproduces the Yang-Mills correlators very well.Comment: 27 pages, 8 figures, v2: method refined, chapter and references adde
Developments in injectable multiphasic biomaterials. The performance of microporous biphasic calcium phosphate granules and hydrogels
Calcium phosphate bioceramic granules associated with hydrosoluble polymers were developed as bone substitutes for various maxillofacial and orthopaedic applications. These injectable bone substitutes, support and regenerate bone tissue and resorb after implantation. The efficiency of these multiphasic materials is due to the osteogenic and osteoconductive properties of the microporous biphasic calcium phosphate. The associated hydrosoluble polymers are considered as carriers in order to achieve the rheological properties of injectable bone substitutes (IBS). In this study, we used 2 semi synthetic hydrosoluble polymers of polysaccharidic origin. The hydroxy propyl methyl cellulose (HPMC), with and without silane, was combined with microporous BCP granules. The presence of silane induced considerable gelation of the suspension. The 2 IBS used (without gelation, IBS1, with gelation, IBS2) were implanted in critical size femoral epiphysis defects in rabbits. No foreign body reactions were observed in either sample. However, because of the higher density from gelation, cell colonisation followed by bone tissue ingrowth was delayed over time with IBS2 compared to the IBS1 without gelation. The results showed resorption of the BCP granule and bone ingrowth at the expense of both IBS with different kinetics. This study demonstrates that the hydrogel cannot be considered merely as a carrier. The gelation process delayed cell and tissue colonisation by slow degradation of the HPMC Si, compared to the faster release of HPMC with IBS1, in turn inducing faster permeability and spaces for tissue ingrowth between the BCP granules
Cyclotron effective masses in layered metals
Many layered metals such as quasi-two-dimensional organic molecular crystals
show properties consistent with a Fermi liquid description at low temperatures.
The effective masses extracted from the temperature dependence of the magnetic
oscillations observed in these materials are in the range, m^*_c/m_e \sim 1-7,
suggesting that these systems are strongly correlated. However, the ratio
m^*_c/m_e contains both the renormalization due to the electron-electron
interaction and the periodic potential of the lattice. We show that for any
quasi-two-dimensional band structure, the cyclotron mass is proportional to the
density of states at the Fermi energy. Due to Luttinger's theorem, this result
is also valid in the presence of interactions. We then evaluate m_c for several
model band structures for the \beta, \kappa, and \theta families of
(BEDT-TTF)_2X, where BEDT-TTF is bis-(ethylenedithia-tetrathiafulvalene) and X
is an anion. We find that for \kappa-(BEDT-TTF)_2X, the cyclotron mass of the
\beta-orbit, m^{*\beta}_c, is close to 2 m^{*\alpha}_c, where m^{*\alpha}_c is
the effective mass of the \alpha- orbit. This result is fairly insensitive to
the band structure details. For a wide range of materials we compare values of
the cyclotron mass deduced from band structure calculations to values deduced
from measurements of magnetic oscillations and the specific heat coefficient.Comment: 12 pages, 3 eps figure
Macromolecular theory of solvation and structure in mixtures of colloids and polymers
The structural and thermodynamic properties of mixtures of colloidal spheres
and non-adsorbing polymer chains are studied within a novel general
two-component macromolecular liquid state approach applicable for all size
asymmetry ratios. The dilute limits, when one of the components is at infinite
dilution but the other concentrated, are presented and compared to field theory
and models which replace polymer coils with spheres. Whereas the derived
analytical results compare well, qualitatively and quantitatively, with
mean-field scaling laws where available, important differences from ``effective
sphere'' approaches are found for large polymer sizes or semi-dilute
concentrations.Comment: 23 pages, 10 figure
Anti-androgens act jointly in suppressing spiggin concentrations in androgen-primed female three-spined sticklebacks - Prediction of combined effects by concentration addition
This is the post-print version of the final paper published in Aquatic Toxicology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Increasing attention is being directed at the role played by anti-androgenic chemicals in endocrine disruption of wildlife within the aquatic environment. The co-occurrence of multiple contaminants with anti-androgenic activity highlights a need for the predictive assessment of combined effects, but information about anti-androgen mixture effects on wildlife is lacking. This study evaluated the suitability of the androgenised female stickleback screen (AFSS), in which inhibition of androgen-induced spiggin production provides a quantitative assessment of anti-androgenic activity, for predicting the effect of a four component mixture of anti-androgens. The anti-androgenic activity of four known anti-androgens (vinclozolin, fenitrothion, flutamide, linuron) was evaluated from individual concentration-response data and used to design a mixture containing each chemical at equipotent concentrations. Across a 100-fold concentration range, a concentration addition approach was used to predict the response of fish to the mixture. Two studies were conducted independently at each of two laboratories. By using a novel method to adjust for differences between nominal and measured concentrations, good agreement was obtained between the actual outcome of the mixture exposure and the predicted outcome. This demonstrated for the first time that androgen receptor antagonists act in concert in an additive fashion in fish and that existing mixture methodology is effective in predicting the outcome, based on concentration-response data for individual chemicals. The sensitivity range of the AFSS assay lies within the range of anti-androgenicity reported in rivers across many locations internationally. The approach taken in our study lays the foundations for understanding how androgen receptor antagonists work together in fish and is essential in informing risk assessment methods for complex anti-androgenic mixtures in the aquatic environment.European Commission and
Natural Environment Research Council
First measurement of the 14N(p,gamma)15O cross section down to 70 keV
In stars with temperatures above 20*10^6 K, hydrogen burning is dominated by
the CNO cycle. Its rate is determined by the slowest process, the
14N(p,gamma)15O reaction. Deep underground in Italy's Gran Sasso laboratory, at
the LUNA 400 kV accelerator, the cross section of this reaction has been
measured at energies much lower than ever achieved before. Using a windowless
gas target and a 4pi BGO summing detector, direct cross section data has been
obtained down to 70 keV, reaching a value of 0.24 picobarn. The Gamow peak has
been covered by experimental data for several scenarios of stable and explosive
hydrogen burning. In addition, the strength of the 259 keV resonance has been
remeasured. The thermonuclear reaction rate has been calculated for
temperatures 90 - 300 *10^6 K, for the first time with negligible impact from
extrapolations
Quantum Griffiths effects and smeared phase transitions in metals: theory and experiment
In this paper, we review theoretical and experimental research on rare region
effects at quantum phase transitions in disordered itinerant electron systems.
After summarizing a few basic concepts about phase transitions in the presence
of quenched randomness, we introduce the idea of rare regions and discuss their
importance. We then analyze in detail the different phenomena that can arise at
magnetic quantum phase transitions in disordered metals, including quantum
Griffiths singularities, smeared phase transitions, and cluster-glass
formation. For each scenario, we discuss the resulting phase diagram and
summarize the behavior of various observables. We then review several recent
experiments that provide examples of these rare region phenomena. We conclude
by discussing limitations of current approaches and open questions.Comment: 31 pages, 7 eps figures included, v2: discussion of the dissipative
Ising chain fixed, references added, v3: final version as publishe
- …