9 research outputs found

    Mass-luminosity relation for FGK main sequence stars: metallicity and age contributions

    Full text link
    The stellar mass-luminosity relation (MLR) is one of the most famous empirical "laws", discovered in the beginning of the 20th century. MLR is still used to estimate stellar masses for nearby stars, particularly for those that are not binary systems, hence the mass cannot be derived directly from the observations. It's well known that the MLR has a statistical dispersion which cannot be explained exclusively due to the observational errors in luminosity (or mass). It is an intrinsic dispersion caused by the differences in age and chemical composition from star to star. In this work we discuss the impact of age and metallicity on the MLR. Using the recent data on mass, luminosity, metallicity, and age for 26 FGK stars (all members of binary systems, with observational mass-errors <= 3%), including the Sun, we derive the MLR taking into account, separately, mass-luminosity, mass-luminosity-metallicity, and mass-luminosity-metallicity-age. Our results show that the inclusion of age and metallicity in the MLR, for FGK stars, improves the individual mass estimation by 5% to 15%.Comment: 7 pages, 4 figures, 1 table, accepted in Astrophysics and Space Scienc

    Dynamic Evolution Model of Isothermal Voids and Shocks

    Full text link
    We explore self-similar hydrodynamic evolution of central voids embedded in an isothermal gas of spherical symmetry under the self-gravity. More specifically, we study voids expanding at constant radial speeds in an isothermal gas and construct all types of possible void solutions without or with shocks in surrounding envelopes. We examine properties of void boundaries and outer envelopes. Voids without shocks are all bounded by overdense shells and either inflows or outflows in the outer envelope may occur. These solutions, referred to as type X\mathcal{X} void solutions, are further divided into subtypes XI\mathcal{X}_{\rm I} and XII\mathcal{X}_{\rm II} according to their characteristic behaviours across the sonic critical line (SCL). Void solutions with shocks in envelopes are referred to as type Z\mathcal{Z} voids and can have both dense and quasi-smooth edges. Asymptotically, outflows, breezes, inflows, accretions and static outer envelopes may all surround such type Z\mathcal{Z} voids. Both cases of constant and varying temperatures across isothermal shock fronts are analyzed; they are referred to as types ZI\mathcal{Z}_{\rm I} and ZII\mathcal{Z}_{\rm II} void shock solutions. We apply the `phase net matching procedure' to construct various self-similar void solutions. We also present analysis on void generation mechanisms and describe several astrophysical applications. By including self-gravity, gas pressure and shocks, our isothermal self-similar void (ISSV) model is adaptable to various astrophysical systems such as planetary nebulae, hot bubbles and superbubbles in the interstellar medium as well as supernova remnants.Comment: 24 pages, 13 figuers, accepted by ApS

    A Microwave Jet Inside the Rosette Nebula?

    No full text
    “The original publication is available at www.springerlink.com”. Copyright Springer. [Full text of this article is not available in the UHRA]Peer reviewe

    New measurements of the 4He abundance in galactic HII

    No full text
    “The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/BFb0104760 [Full text of this article is not available in the UHRA]Preliminary results of the 4He relative abundance determination from Radio Recombination Lines observations at different frequencies in the Orion, Rosette and W3 HII regions are presented. The Orion HII region has been mapped at both 22 GHz and 36 GHz with the same beamwidth (2 arcmin) using the Medicina and Puschino radio telescopes respectively. The RRLs parameters, together with their variation with frequency and with distance were determined by centering the map on the star ϑ 1 OriC. Three positions were observed in the Rosette HII region at 8.3 GHz leading to the first detection in this region of the transition He92α. The derived 4He relative abundance is considerably greater than the ones obtained from previous measurements. The W3 HII region was observed at 36 GHz and the 4He/H value derived was compared with previous measurements performed with higher spatial resolution.Peer reviewe
    corecore