2 research outputs found

    Oxygen diffusion in nanostructured perovskites

    Get PDF
    Nonstoichiometric perovskite-related oxides (such as ferrites and cobaltites, etc.) are characterized by fast oxygen transport at ambient temperatures, which relates to the microstructural texturing of these materials, consisting wholly of nanoscale microdomains. We have developed an inhomogeneous diffusion model to describe the kinetics of oxygen incorporation into nanostructured oxides. Nanodomain boundaries are assumed to be the high diffusivity paths for oxygen transport whereas diffusion into the domains proceeds much slower. Using Laplace transform methods, an exact solution is found for a ramped stepwise potential, allowing fitting of the experimental data to theoretical curves (in Laplace transforms). A further model generalization is considered by introducing additional parameters for the size distribution of domains and particles. The model has been applied for qualitative evaluation of oxygen diffusion parameters from the data on wet electrochemical oxidation of nano-structured perovskite SrCo_0.5Fe_0.2Ta_0.3O_{3-y} samples.Comment: Submitted for ICCMR-7 conference (Italy). Latex (elsart.cls), 15 pages, 7 figure
    corecore