480 research outputs found

    Gene Expression Profiles as Markers of Aggressive Disease-EGFR as a Factor

    Get PDF
    We previously reported that 43 (58%) of 75 head and neck squamous cell carcinoma (HNSCC) tumors harbor increased epidermal growth factor receptor (EGFR) gene copy numbers as determined by fluorescent in situ hybridization. In this study, an increased EGFR copy number was associated with decreased progression-free survival and overall survival of HNSCC patients. However, activated EGFR protein levels are difficult to quantify by immunohistochemistry and are subject to dynamic regulation, specifically receptor downregulation on ligand binding. Therefore, we generated an activated EGFR gene expression signature in an in vitro HaCaT keratinocyte model system to further study genes involved in the EGFR signaling pathway in HNSCC. The results from this model system have suggested that the activated EGFR signature might reflect the activated state of the EGFR pathway in human HNSCC tumors and that it is associated with the increased EGFR gene copy number by fluorescent in situ hybridization. Furthermore, the activated EGFR signature has provided additional leads, because they are related to co-regulated molecular pathways and associated gene products on activation of EGFR. These could be exploited to refine and optimize combination therapies to be used in conjunction with available EGFR inhibitors in individual HNSCC patients

    Compressibility and Electronic Structure of MgB2 up to 8 GPa

    Full text link
    The lattice parameters of MgB2 up to pressures of 8 GPa were determined using high-resolution x-ray powder diffraction in a diamond anvil cell. The bulk modulus, B0, was determined to be 151 +-5 GPa. Both experimental and first-principles calculations indicate nearly isotropic mechanical behavior under pressure. This small anisotropy is in contrast to the 2 dimensional nature of the boron pi states. The pressure dependence of the density of states at the Fermi level and a reasonable value for the average phonon frequency account within the context of BCS theory for the reduction of Tc under pressure.Comment: REVTeX file. 4 pages, 4 figure

    Nonlinear excitations in CsNiF3 in magnetic fields perpendicular to the easy plane

    Full text link
    Experimental and numerical studies of the magnetic field dependence of the specific heat and magnetization of single crystals of CsNiF3 have been performed at 2.4 K, 2.9 K, and 4.2 K in magnetic fields up to 9 T oriented perpendicular to the easy plane. The experimental results confirm the presence of the theoretically predicted double peak structure in the specific heat arising from the formation of nonlinear spin modes. The demagnetizing effects are found to be negligible, and the overall agreement between the data and numerical predictions is better than reported for the case when the magnetic field was oriented in the easy plane. Demagnetizing effects might play a role in generating the difference observed between theory and experiment in previous work analyzing the excess specific heat using the sine-Gordon model.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    In Situ Measurements of Interstellar Dust

    Get PDF
    We present the mass distribution of interstellar grains measured in situ by the Galileo and Ulysses spaceprobes as cumulative flux. The derived in situ mass distribution per logarithmic size interval is compared to the distribution determined by fitting extinction measurements. Large grains measured in situ contribute significantly to the overall mass of dust in the local interstellar cloud. The problem of a dust-to-gas mass ratio that contradicts cosmic abundances is discussed.Comment: 4 pages and two figure

    Transport properties of strongly correlated metals:a dynamical mean-field approach

    Get PDF
    The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling are calculated. Dynamical mean-field theory, which maps the Hubbard model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a non-monotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value, hbar a/e^2 (where "a" is a lattice constant) associated with mean-free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.Comment: 19 pages, 9 eps figure

    Classical dynamics of a two-species Bose-Einstein condensate in the presence of nonlinear maser processes

    Full text link
    The stability analysis of a generalized Dicke model, in the semi-classical limit, describing the interaction of a two-species Bose-Einstein condensate driven by a quantized field in the presence of Kerr and spontaneous parametric processes is presented. The transitions from Rabi to Josephson dynamics are identified depending on the relative value of the involved parameters. Symmetry-breaking dynamics are shown for both types of coherent oscillations due to the quantized field and nonlinear optical processes.Comment: 12 pages, 5 figures. Accepted for publication as chapter in "Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations in Nonlinear Systems

    CrN/NbN coatings deposited by HIPIMS: A preliminary study of erosion-corrosion performance

    Get PDF
    Nanoscale CrN/NbN multilayer PVD coatings have exhibited resistance to erosion-corrosion. However growth defects (under dense structures and droplets) in the coating produced by some deposition technologies reduce the ability to offer combined erosion-corrosion resistance. In this work a novel High Power Impulse Magnetron Sputtering (HIPIMS) technique has been utilised to pretreat substrates and deposit dense nanoscale CrN/NbN PVD coatings (HIPIMS-HIPIMS technique). This new technique, rich with metal ion plasma, deposits very dense structures and offers virtually defect free coatings (free of droplets as observed in cathodic arc technique and under-dense structures observed in standard dc sputtering). Plasma diagnostic studies revealed a high metal ion-to-gas ion ratio (Cr:Ar) of 3:1 for HIPIMS pretreatment conditions with the detection of 14% Cr2+ and 1% Cr3+ ions and J(s) of 155 mAcm(-2). For deposition conditions the metal ion-to-gas ratio was approximately 1:4 which is significantly higher compared to DC at 1:30. Characterisation results revealed a high adhesion of L-C 80 N, high hardness of 34 GPa and Young's modulus of 381 GPa. Low friction coefficient (0.46) and dry sliding wear coefficient, K-C (1.22 x 10(-15) m(3)Nm(-1)) were recorded. The effect of deposition technique (droplet defect and intergranular void free coatings) on erosion-corrosion resistance of CrN/NbN coatings has been evaluated by subjecting the coatings to a slurry impingement (Na2CO3 + NaHCO3 buffer solution with Al2O3 particles of size 500-700 mu m) at 90 degrees impact angle with a velocity of 4 ms(-1). Experiments have been carried at -1000 mV, + 300 mV and + 700 mV representing 3 different corrosion conditions. (c) 2009 Elsevier B.V. All rights reserved

    How Gibbs distributions may naturally arise from synaptic adaptation mechanisms. A model-based argumentation

    Get PDF
    This paper addresses two questions in the context of neuronal networks dynamics, using methods from dynamical systems theory and statistical physics: (i) How to characterize the statistical properties of sequences of action potentials ("spike trains") produced by neuronal networks ? and; (ii) what are the effects of synaptic plasticity on these statistics ? We introduce a framework in which spike trains are associated to a coding of membrane potential trajectories, and actually, constitute a symbolic coding in important explicit examples (the so-called gIF models). On this basis, we use the thermodynamic formalism from ergodic theory to show how Gibbs distributions are natural probability measures to describe the statistics of spike trains, given the empirical averages of prescribed quantities. As a second result, we show that Gibbs distributions naturally arise when considering "slow" synaptic plasticity rules where the characteristic time for synapse adaptation is quite longer than the characteristic time for neurons dynamics.Comment: 39 pages, 3 figure
    • …
    corecore