7 research outputs found

    Two-band fast Hartley transform

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Efficient algorithms have been developed over the past 30 years for computing the forward and inverse discrete Hartley transforms (DHTs). These are similar to the fast Fourier transform (FFT) algorithms for computing the discrete Fourier transform (DFT). Most of these methods seek to minimise the complexity of computations and or the number of operations. A new approach for the computation of the radix-2 fast Hartley transform (FHT) is presented. The proposed algorithm, based on a two-band decomposition of the input data, possesses a very regular structure, avoids the input or out data shuffling, requires slightly less multiplications than the existing approaches, but increases the number of additions

    Molecular Analysis of a Major Carpel Developmental Regulator: CRABS CLAW’s Protein Domains and Non-Cell-Autonomous Action

    Get PDF
    CRABS CLAW is a small protein belonging to the YABBY family, a plant specific protein family. In Arabidopsis thaliana it is expressed in the developing carpels and regulates the apical fusion of the two carpels, transmitting tract development, lateral growth, and nectary formation. The expression of CRC is rather complex with multiple expression domains throughout the young gynoecium and as for other YABBY proteins a non-cell-autonomous action has been described. However, only few regulators of CRC expression and target genes are described and the mode of non-cell-autonomous action is still unknown. This dissertation aims to identify transcriptional regulators, responsible for the proper temporal and spatial expression of CRC, the specification of CRC’s place in the adaxial-abaxial regulatory network and to clarify the means of its non-cell-autonomous action. The regulation of CRC expression has been analyzed via a large scale Yeast-1-Hybrid screen and identified over 100 potential regulators of CRC expression, integrating CRC tightly into the carpel developmental regulatory protein network. Further analysis of CRC function through expression analysis led to the identification of target genes of CRC like mir165/166, members of the KANADI gene family, and the HD ZIP III gene family. Both gene families are major players in the adaxial-abaxial regulatory network, involved in the development of all lateral plant organs such as leaves and floral organs. CRC supports KANADI action and activates the expression of other involved factors. In addition, CRC directly targets members of the HD ZIP III family. However, CRC’s position in the adaxial- abaxial regulatory network seems to be not conserved in other eudicots. CRC exhibits a non- cell-autonomous action which is conferred by at least two signaling pathways. Abaxial polarity is regulated by the activation of the mobile miRNA165/166. At the same time, localizations of GFP tagged CRC revealed the CRC protein to be mobile as it migrates into the adaxial domain in young gynoecia. In older gynoecia it was excluded from the adaxial domain. This study identified multiple unique features of CRC compared to its relatives. Its thightly controlled expression by over 100 putative regulators, integration in complex co-expression networks, adaxial and abaxial target genes, and its two mode non-cell-autonomous action indicate the important role in the complicated carpel development.CRABS CLAW ist ein kleines Protein der pflanzenspezifischen YABBY Protein Familie. In Arabidopsis thaliana ist es in den entwickelnden Fruchtblättern exprimiert und reguliert die apikale Fusion der Fruchtblätter, die Entwicklung des Transmissionskanal (einem Bereich des Septums), die Begrenzung des lateralen Wachstums des Gynoeceums, und die Bildung der Nektarien. Die Expression von CRC ist auf mehrere Bereiche im Fruchtblatt aufgeteilt und ebenso wurde ein nicht-zell-autonomer Effekt wie für andere YABBY Proteine beschrieben. Jedoch sind nur einige wenige Regulatoren der CRC Expression und Zielgene von CRC bekannt, sowie die Natur des mobilen Signals des nicht-zell-autonomen Effektes unbekannt ist. Daher zielt diese Dissertation darauf, zusätzliche transkriptionelle Regulatoren, die für die korrekte zeitliche und räumliche Expression von CRC nötig sind, zu identifizieren, sowie CRCs Position im adaxialen-abaxialen Netzwerk zu identifizieren und die Art und Weise des nicht-zell-autonomen Effektes zu klären. Die Expression von CRC wurde durch eine groß angelegte Hefe-1-Hybrid Analyse näher untersucht und über 100 mögliche Regulatoren der CRC Expression wurden identifiziert. Dies festigt CRCs Position im gen-regulatorischen Netzwerk der Fruchtblattentwicklung. Eine weitere Analyse der CRC Funktionen mittels Expressionsanalyse führte zu der Identifikation mehrerer Zielgene wie mir165/166, Mitglieder der KANADI Genfamilie und Mitglieder der HD ZIP III Genfamilie. Beide Genfamilien sind Hauptkomponenten des adaxial–abaxialen Regulationsnetzwerkes. Dabei unterstützt CRC die Funktion der KAN Proteine und reguliert die Expression anderer involvierter Gene. Zusätzlich reguliert CRC direkt die Expression einiger HD ZIP III Gene. Wobei die Regulation der adaxial-abaxialen Regulatoren durch CRC zwischen verschiedenen Eudikotylen nicht komplett konserviert ist. CRC weist eine nicht-zell-autonome Funktion auf, die durch mindestens zwei Signalübertragungswege vermittelt wird. Zum einen reguliert CRC die abaxiale Polarität durch die Aktivierung der mobilen miRNA165/166 und zum anderen durch direkten Transport des CRC Proteins. Lokalisierungen von mit GFP markierten CRC zeigten, dass das CRC Protein in den frühen Stadien des Gyneoceums von der abaxialen Domäne in die adaxiale wandert. In späteren Stadien ist CRC auf die abaxiale Domäne begrenzt. Diese Studie konnte mehrere einzigartige CRC Charakteristika identifizieren, die CRC von den anderen Mitgliedern der YABBY Familie unterscheidet. Seine stark kontrollierte Expression durch mehr als 100 mögliche Regulatoren, die Integration in ein kompliziertes Co- Expressions Netzwerk, adaxiale und abaxiale Zielgene, und mindestens zwei Möglichkeiten zur nicht-zell-autonomen Regulation, zeigen eindringlich die wichtige Rolle CRCs in der komplexen Karpellentwicklung auf

    FPGA-based performance analysis of stream ciphers ZUC, Snow3g, Grain V1, Mickey V2, Trivium and E0

    No full text
    In this paper, the hardware implementations of six representative stream ciphers are compared in terms of performance, consumed area and the throughput-to-area ratio. The stream ciphers used for the comparison are ZUC, Snow3g, Grain V1, Mickey V2, Trivium and E0. ZUC, Snow3g and E0 have been used for the security part of well known standards, especially wireless communication protocols. In addition, Grain V1, Mickey V2 and Trivium are currently selected as the final portfolio of stream ciphers for Profile 2 (Hardware) by the eStream project. The designs were implemented by using VHDL language and for the hardware implementations a FPGA device was used. The highest throughput has been achieved by Snow3g with 3330 Mbps at 104 MHz and the lowest throughput has been achieved by E0 with 187 Mbps at 187 MHz. Also, the most efficient cipher for hardware implementation in terms of throughput-to-area ratio is Mickey V2 cipher while the worst cipher for hardware implementation is Grain V1. © 2012 Elsevier B.V. All rights reserved

    Efficient Computation of the Two-Dimensional Fast Cosine Transform

    No full text
    An extension of one of the fastest existing algorithms for the computation of the 2D discrete cosine transform is given. The algorithm can be implemented in-place requiring N 2 less memory locations and 2N 2 less data transfers for the computation of NxN DCT points compared to existing 2D FCT algorithms. Based on the proposed algorithm, a fast pruning algorithm is derived for computing the N 0 xN 0 lowest frequency components of a length NxN discrete cosine transform, with both N and N 0 being powers of 2. The computational complexity of the algorithm is compared with the row-column pruning method and experimental results on execution times are given. 1. INTRODUCTION Since its introduction, 1 the discrete cosine transform (DCT) has found wide application in image and signal processing in general and in data compression in particular. It has been adopted as part of the standards for still and moving pictures coding. 13 This is so, because it performs much like the statistically optima..
    corecore