6 research outputs found

    Molecular simulation of chevrons in confined smectic liquid crystals

    Get PDF
    Chevron structures adopted by confined smectic liquid crystals are investigated via molecular dynamics simulations of the Gay-Berne model. The chevrons are formed by quenching nematic films confined between aligning planar substrates whose easy axes have opposing azimuthal components. When the substrates are perfectly smooth, the chevron formed migrates rapidly towards one of the confining walls to yield a tilted layer structure. However, when substrate roughness is included, by introducing a small-amplitude modulation to the particle- substrate interaction well-depth, a symmetric chevron is formed which remains stable over sufficiently long runtimes for detailed structural information, such as the relevant order parameters and director orien- tation, to be determined. For both smooth and rough boundaries, the smectic order parameter remains non-zero across the entire chevron, implying that layer identity is maintained across the chevron tip. Also, when the surface-stabilised chevron does eventually revert to a tilted layer structure, it does so via surface slippage, such that layer integrity is maintained throughout the chevron to tilted layer relaxation process. </p

    Dynamics of chevron structure formation

    No full text
    The natural structure for smectic-A liquid crystals arranged in a sample with homogeneous boundary conditions is the so-called bookshelf structure with uniform layers perpendicular to the sample cell plane. However, this structure often deforms into the so-called chevron structure when the sample is cooled. This deformation is usually thought to result from the mismatch between bulk and surface layer thicknesses. In this paper we study the dynamics of chevron formation. Two possible scenarios are envisaged. In one of these there is strong coupling between layer deformation and fluid flow, and in the other the fluid essentially does not move. In this paper we examine the first scenario, leaving the second, slower relaxation mode for another paper. Analytic solutions are found for near-critical deformations, and numerical solutions are found beyond the critical regime

    Dynamics of chevron formation II: permeation-dominated phenomena.

    No full text
    This paper continues a study of the dynamics of chevron formation in smectic-A liquid crystals in samples with boundary conditions apparently favoring the bookshelf structure, with uniform layers perpendicular to the sample cell plane. The chevron structure that arises when the sample is cooled results from the mismatch between preferred bulk and surface layer thicknesses. In a previous paper we considered relaxation driven by the strong coupling between layer deformation and fluid flow. In this paper we discuss the alternative scenario in which boundary conditions suppress this coupling. Layer deformation now occurs by layer relaxation in the absence of fluid flow. This process is extremely slow and is governed by the nonlinear Fisher-Kolmogorov equation. Chevrons do form under some circumstances, but the process is irregular, and quasimetastable jagged multi-edged multi-tip-like structures can occur on intermediate time scales for suitable layer strains. In the absence of surface layer pinning, layer slippage occurs at the surfaces. We also examine the possibility that deformation may occur through a wave of invasion destroying the bookshelf region
    corecore