9 research outputs found

    Transition Radiation by Neutrinos

    Full text link
    We calculate the transition radiation process Îœâ†’ÎœÎł\nu \to \nu \gamma at an interface of two media. The neutrinos are taken to be with only standard-model couplings. The medium fulfills the dual purpose of inducing an effective neutrino-photon vertex and of modifying the photon dispersion relation. The transition radiation occurs when at least one of those quantities have different values in different media. The neutrino mass is ignored due to its negligible contribution. We present a result for the probability of the transition radiation which is both accurate and analytic. For EÎœ=1E_\nu =1 MeV neutrino crossing polyethylene-vacuum interface the transition radiation probability is about 10−3910^{-39} and the energy intensity is about 10−3410^{-34} eV. At the surface of the neutron stars the transition radiation probability may be ∌10−20\sim 10^{-20}. Our result on three orders of magnitude is larger than the results of previous calculations

    The electromagnetic vertex of neutrinos in an electron background and a magnetic field

    Full text link
    We study the electromagnetic vertex function of a neutrino that propagates in an electron background in the presence of a static magnetic field. The structure of the vertex function under the stated conditions is determined and it is written down in terms of a minimal and complete set of tensors. The one-loop expressions for all the form factors is given, up to terms that are linear in the magnetic field, and the approximate integral formulas that hold in the long wavelength limit are obtained. We discuss the physical interpretation of some of the form factors and their relation with the concept of the neutrino induced charge. The neutrino acquires a longitudinal and a transverse charge, due to the fact that the form factors depend on the transverse and longitudinal components of the photon momentum independently. We compute those form factors explicitly in various limiting cases and find that the longitudinal and transverse charge are the same for the case of a non-relativistic electron gas, but not otherwise.Comment: 18 pages. Revtex4, axodra

    Toward Automatic Label-Free Whispering Gallery Modes Biodetection with a Quantum Dot-Coated Microsphere Population

    Get PDF
    We explore a new calibration-free approach to biodetection based on whispering gallery modes (WGMs) without a reference measure and relative shifts. Thus, the requirement to keep track of the sensor position is removed, and a freely moving population of fluorophore-doped polystyrene microspheres can now fulfill this role of sensing resonator. Breaking free from fixed surface-based biosensing promotes adhesion between the microsphere sensors and the analytes since both can now be thoroughly mixed. The 70-nm-wide spectrum of green fluorescent microbeads allows us to monitor over 20 WGMs simultaneously without needing evanescent light coupling into the microspheres, hence enabling remote sensing. Since the exact radius of each microsphere is unknown a priori, it requires algorithmic analyses to obtain a reliable result for the refractive index of a solution. We first test our approach with different solutions of alcohol in water obtaining 3 × 10−4 precision on the refractive index at lower concentrations. Then, the solutions of bacterial spores in water yield clear evidence of biodetection in the statistical analysis of WGMs from 50 microspheres. To extend the fluorescence spectral range of our WGM sensors, we present preliminary results on coating microspheres with CdSe/ZnS quantum dots
    corecore