34 research outputs found
Prospects for atomic magnetometers employing hollow core optical fibre
Presently, among the most demanding applications for highly sensitive magnetometers are Magnetocardiography (MCG) and Magnetoencephalography (MEG), where sensitivities of around 1pT.Hz<sup>-1/2</sup> and 1fT.Hz<sup>-1/2</sup> are required. Cryogenic Superconducting Quantum Interference Devices (SQUIDs) are currently used as the magnetometers. However, there has been some recent work on replacing these devices with magnetometers based on atomic spectroscopy and operating at room temperature. There are demonstrations of MCG and MEG signals measured using atomic spectroscopy These atomic magnetometers are based on chip-scale microfabricated components. In this paper we discuss the prospects of using photonic crystal optical fibres or hollow core fibres (HCFs) loaded with Rb vapour in atomic magnetometer systems. We also consider new components for magnetometers based on mode-locked semiconductor lasers for measuring magnetic field via coherent population trapping (CPT) in Rb loaded HCFs
Passively mode-locked semiconductor laser for coherent population trapping in <sup>87</sup>Rb
Passively mode-locked semiconductor laser for coherent population trapping in <sup>87</sup>Rb is reported. The laser material used is a 793nm GaAs/Al<sub>x</sub>Ga<sub>1-x</sub>As single quantum well (QW) graded index separate confinement heterostructure
Passive coherent discriminator using phase diversity for the simultaneous measurement of frequency noise and intensity noise of a continuous-wave laser
The frequency noise and intensity noise of a laser set the performance limits in many modern photonics applications and, consequently, must often be characterized. As lasers continue to improve, the measurement of these noises however becomes increasingly challenging. Current approaches for the characterization of very high-performance lasers often call for a second laser with equal or higher performance to the one that is to be measured, an incoherent interferometer having an extremely long delay-arm, or an interferometer that relies on an active device. These instrumental features can be impractical or problematic under certain experimental conditions. As an alternative, this paper presents an entirely passive coherent interferometer that employs an optical 90° hybrid coupler to perform in-phase and quadrature detection. We demonstrate the technique by measuring the frequency noise power spectral density of a highly-stable 192 THz (1560 nm) fiber laser over five frequency decades. Simultaneously, we are able to measure its relative intensity noise power spectral density and characterize the correlation between its amplitude noise and phase noise. We correct some common misconceptions through a detailed theoretical analysis and demonstrate the necessity to account for normal imperfections of the optical 90° hybrid coupler. We finally conclude that this passive coherent discriminator is suitable for reliable and simple noise characterization of highly-stable lasers, with bandwidth and dynamic range benefits but susceptibility to additive noise contamination.V Michaud-Belleau, H Bergeron, P S Light, N B HĂ©bert, J D DeschĂȘnes, A N Luiten and J Genes
Erratum: Quantitative atomic spectroscopy for primary thermometry [Phys. Rev. A 83, 033805 (2011)]
Original article was published with a typographical error in Eq. (4) on p. 6, in Physical Review A, 2011; 83(3):033805-1-033805-9.Gar-Wing Truong, Eric F. May, Thomas M. Stace, and André N. Luite
Complex direct comb spectroscopy with a virtually imaged phased array
LetterAbstract not availableSarah K. Scholten, James D. Anstie, Nicolas Bourbeau HĂ©bert, Richard T. White, JĂ©rĂŽme Genest, and Andre N. Luite
Probing For New Physics and Detecting non linear vacuum QED effects using gravitational wave interferometer antennas
Low energy non linear QED effects in vacuum have been predicted since 1936
and have been subject of research for many decades. Two main schemes have been
proposed for such a 'first' detection: measurements of ellipticity acquired by
a linearly polarized beam of light passing through a magnetic field and direct
light-light scattering. The study of the propagation of light through an
external field can also be used to probe for new physics such as the existence
of axion-like particles and millicharged particles. Their existence in nature
would cause the index of refraction of vacuum to be different from unity in the
presence of an external field and dependent of the polarization direction of
the light propagating. The major achievement of reaching the project
sensitivities in gravitational wave interferometers such as LIGO an VIRGO has
opened the possibility of using such instruments for the detection of QED
corrections in electrodynamics and for probing new physics at very low
energies. In this paper we discuss the difference between direct birefringence
measurements and index of refraction measurements. We propose an almost
parasitic implementation of an external magnetic field along the arms of the
VIRGO interferometer and discuss the advantage of this choice in comparison to
a previously proposed configuration based on shorter prototype interferometers
which we believe is inadequate. Considering the design sensitivity in the
strain, for the near future VIRGO+ interferometer, of in the range 40 Hz Hz leads to a variable
dipole magnet configuration at a frequency above 20 Hz such that Tm/ for a `first' vacuum non linear QED detection
Laser-based metastable krypton generation
We demonstrate the generation of metastable krypton in the long-lived 1s^{5} state using laser excitation. The atoms are excited through a two-photon absorption process into the 2p^{6} state using a pulsed optical parametric oscillator laser operating near 215Â nm, after which the atoms decay quickly into the metastable state with a branching ratio of 75%. The interaction dynamics are modeled using density matrix formalism and, by combining this with experimental observations, we are able to calculate photoionization and two-photon absorption cross sections. When compared to traditional approaches to metastable production, this approach shows great potential for high-density metastable krypton production with minimal heating of the sample. Here, we show metastable production efficiencies of up to 2% per pulse. The new experimental results gained here, when combined with the density matrix model we have developed, suggest that fractional efficiencies up to 30% are possible under optimal conditions.M. A. Dakka, G. Tsiminis, R. D. Glover, C. Perrella, J. Moffatt, N. A. Spooner, R. T. Sang, P. S. Light, and A. N. Luite
Probing vacuum birefringence by phase-contrast Fourier imaging under fields of high-intensity lasers
In vacuum high-intensity lasers can cause photon-photon interaction via the
process of virtual vacuum polarization which may be measured by the phase
velocity shift of photons across intense fields. In the optical frequency
domain, the photon-photon interaction is polarization-mediated described by the
Euler-Heisenberg effective action. This theory predicts the vacuum
birefringence or polarization dependence of the phase velocity shift arising
from nonlinear properties in quantum electrodynamics (QED). We suggest a method
to measure the vacuum birefringence under intense optical laser fields based on
the absolute phase velocity shift by phase-contrast Fourier imaging. The method
may serve for observing effects even beyond the QED vacuum polarization.Comment: 14 pages, 9 figures. Accepted by Applied Physics
Ultra-sensitive thermometer based on a compact optical resonator
Published online: 24 Sep 2014This article demonstrates a thermometer based on millimeter-scale crystalline disk optical-resonator. By measuring the relative speed difference between 2 colors of light that travel inside the disk, the temperature changes of the disk was measured with a precision of 30 billionths of a degree.Wenle Weng and Andre N Luite
Short pulses in optical resonators
We model the behavior of short and ultrashort laser pulses in high-finesse Fabry-Perot resonators, examining, in particular, the influence of cavity mirror reflectance and dispersion. The total coupling, peak power enhancement and temporal broadening of circulating pulses are characterized a function of the duration of the incident pulses.We show that there is an optimal input pulse duration which maximizes peak power for a given set of mirror characteristics.J. C. Petersen and A. N. Luite