3 research outputs found

    The Random Quadratic Assignment Problem

    Full text link
    Optimal assignment of classes to classrooms \cite{dickey}, design of DNA microarrays \cite{carvalho}, cross species gene analysis \cite{kolar}, creation of hospital layouts cite{elshafei}, and assignment of components to locations on circuit boards \cite{steinberg} are a few of the many problems which have been formulated as a quadratic assignment problem (QAP). Originally formulated in 1957, the QAP is one of the most difficult of all combinatorial optimization problems. Here, we use statistical mechanical methods to study the asymptotic behavior of problems in which the entries of at least one of the two matrices that specify the problem are chosen from a random distribution PP. Surprisingly, this case has not been studied before using statistical methods despite the fact that the QAP was first proposed over 50 years ago \cite{Koopmans}. We find simple forms for CminC_{\rm min} and CmaxC_{\rm max}, the costs of the minimal and maximum solutions respectively. Notable features of our results are the symmetry of the results for CminC_{\rm min} and CmaxC_{\rm max} and the dependence on PP only through its mean and standard deviation, independent of the details of PP. After the asymptotic cost is determined for a given QAP problem, one can straightforwardly calculate the asymptotic cost of a QAP problem specified with a different random distribution PP
    corecore