68 research outputs found

    Anatomical Guide to the Paranasal Sinuses of Domestic Animals

    Get PDF
    Paranasal sinuses are paired cavities within the skull, which develop by evagination into the spongy bone between the external and internal plates of the cranial and facial bones. Thus, each sinus is lined by respiratory epithelium and has direct or indirect communication to the nasal cavity. The purpose of this chapter is to present an anatomical reference guide of the paranasal sinuses in domestic animals, including large and small ruminants (cattle, buffalo, sheep, and goats), camels, canines (dog) and equines (horse and donkey), appropriate for use by anatomists, radiologists, clinicians, and veterinary students. Topographic descriptions and the relationships between the various air cavities and paranasal sinuses have been visualized using computed tomography and cadaver sections images. The anatomical features (including head bones, muscles, and soft tissues) have been compared using both dissected heads and skulls and computed tomography images. This chapter will therefore be useful as a normal reference guide for clinical applications

    Ossa cordis and os aorta in the one‐humped camel: Computed tomography, light microscopy and morphometric analysis

    Get PDF
    The present study describes the morphological characteristics of the camel heart Ossa cordis, and os aorta using computed tomography soft tissue window (CT) alongside 3D render volume reconstructions and light microscopy. The current study techniques demonstrated the Ossa cordis and os aorta in the cardiac window with more precision than the black and white (ghost), and angiography images. Transverse and sagittal CT images additionally demonstrated the presence of Ossa cordis and os aorta. This study is the first to record two small Ossa cordis sinistrum and one os aorta in the camel heart, in addition to the more commonly observed singular, large, os cordis dextrum. The os cordis dextrum was always located in the upper part of the interventricular septum, near to its junction with the atrium, forming an elongated rectangular shape when observed transversally. The wider cranial part was composed from bone, whereas the caudal aspect was narrow and contained both bone and cartilage. Light microscopy identified that the os cordis dextrum consisted of trabecular bone, marrow spaces, and hyaline cartilage. Two Ossa cordis sinistrum were detected on the left side of the heart, one in the right fibrous ring and another in the interventricular septum, microscopy showed that both contained only trabecular bone with osteocytes, osteoblasts, and osteoclasts. At the level of ascending aorta, there was also trabecular bone containing osteocytes, an os aorta

    Morphological and imaging evaluation of the metacarpophalangeal and metatarsophalangeal joints in healthy and lame donkeys

    Get PDF
    The donkey is of socio-economic value yet imaging techniques in both healthy and abnormal limbs are a limiting factor in research and medicine. The objective was to determine anatomical features of both healthy and clinically abnormal donkey metacarpophalangeal and metatarsophalangeal joints (n=13) using anatomical dissection, casting, x-ray and computed tomography. The joint capsule contained two palmar/plantar and two dorsal recesses. The proximal-palmar or plantar recess was larger than the distodorsal recess and potential sites of approaches to the recesses were determined. Soft tissue structures were distinguished using computed tomography at 300mA which was superior to 120mA. This methodology gave better assessments of the synovial tendon sheath, joint recesses and cruciate, collateral and short sesamoidean ligaments. Computed tomography provided outstanding discrimination between the cortex and medulla of the third metacarpal, the proximal sesamoid bones, the proximal phalanx and excellent details of the osseous structures. Although the joints appeared free from exostosis using x-ray; the position and extension of exostosis in pathologically affected donkeys (a novel finding) was revealed using computed tomography with 300mA in comparison to 120mA. The study also provided an anatomical record of the metacarpophalangeal and metatarsophalangeal joints using the latest technology which could impact on clinical situations including anesthesia injection sites

    Reliable Estimation of CD8 T Cell Inhibition of In Vitro HIV-1 Replication

    Get PDF
    The HIV-1 viral inhibition assay (VIA) measures CD8 T cell-mediated inhibition of HIV replication in CD4 T cells and is increasingly used for clinical testing of HIV vaccines and immunotherapies. The VIA has multiple sources of variability arising from in vitro HIV infection and co-culture of two T cell populations. Here, we describe multiple modifications to a 7-day VIA protocol, the most impactful being the introduction of independent replicate cultures for both HIV infected-CD4 (HIV-CD4) and HIV-CD4:CD8 T cell cultures. Virus inhibition was quantified using a ratio of weighted averages of p24+ cells in replicate cultures and the corresponding 95% confidence interval. An Excel template is provided to facilitate calculations. Virus inhibition was higher in people living with HIV suppressed on antiretroviral therapy (n=14, mean: 40.0%, median: 43.8%, range: 8.2 to 73.3%; p < 0.0001, two-tailed, exact Mann-Whitney test) compared to HIV-seronegative donors (n = 21, mean: -13.7%, median: -14.4%, range: -49.9 to 20.9%) and was stable over time (n = 6, mean %COV 9.4%, range 0.9 to 17.3%). Cross-sectional data were used to define 8% inhibition as the threshold to confidently detect specific CD8 T cell activity and determine the minimum number of culture replicates and p24+ cells needed to have 90% statistical power to detect this threshold. Last, we note that, in HIV seronegative donors, the addition of CD8 T cells to HIV infected CD4 T cells consistently increased HIV replication, though the level of increase varied markedly between donors. This co-culture effect may contribute to the weak correlations observed between CD8 T cell VIA and other measures of HIV-specific CD8 T cell function

    CD8 T Cell Virus Inhibition Assay Protocol

    Get PDF
    The human immunodeficiency virus (HIV)-1 viral inhibition assay (VIA) measures CD8+ T cell-mediated inhibition of HIV replication in CD4+ T cells and is increasingly used for clinical testing of HIV vaccines and immunotherapies. Different VIAs that differ in length of CD8:CD4 T cell culture periods (6-13 days), purity of CD4 cultures [isolated CD4+ T cells or CD8+ depleted peripheral blood mononuclear cells (PBMCs)], HIV strains (laboratory strains, isolates, reporter viruses) and read-outs of virus inhibition (p24 ELISA, intracellular measurement of p24, luciferase reporter expression, and viral gag RNA) have been reported. Here, we describe multiple modifications to a 7-day VIA protocol, the most impactful being the introduction of independent replicate cultures for both HIV infected-CD4 (HIV-CD4) and HIV-CD4:CD8 T cell cultures. Virus inhibition was quantified using a ratio of weighted averages of p24+ cells in replicate cultures and the corresponding 95% confidence intervals. We identify methodological and analysis changes that could be incorporated into other protocols to improve assay reproducibility. We found that in people living with HIV (PLWH) on antiretroviral therapy (ART), CD8 T cell virus inhibition was largely stable over time, supporting the use of this assay and/or analysis methods to examine therapeutic interventions

    CRISPR-CAS diversity in clinical salmonella enterica serovar typhi isolates from South Asian countries

    Get PDF
    Typhoid fever, caused by Salmonella enterica serovar Typhi (S. Typhi), is a global health concern and its treatment is problematic due to the rise in antimicrobial resistance (AMR). Rapid detection of patients infected with AMR positive S. Typhi is, therefore, crucial to prevent further spreading. Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated genes (CRISPR-Cas), is an adaptive immune system that initially was used for typing purposes. Later, it was discovered to play a role in defense against phages and plasmids, including ones that carry AMR genes, and, at present, it is being explored for its usage in diagnostics. Despite the availability of whole-genome sequences (WGS), very few studied the CRISPR-Cas system of S. Typhi, let alone in typing purposes or relation to AMR. In the present study, we analyzed the CRISPR-Cas system of S. Typhi using WGS data of 1059 isolates obtained from Bangladesh, India, Nepal, and Pakistan in combination with demographic data and AMR status. Our results reveal that the S. Typhi CRISPR loci can be classified into two groups: A (evidence level >2) and B (evidence level ≤2), in which we identified a total of 47 unique spacers and 15 unique direct repeats. Further analysis of the identified spacers and repeats demonstrated specific patterns that harbored significant associations with genotype, demographic characteristics, and AMR status, thus raising the possibility of their usage as biomarkers. Potential spacer targets were identified and, interestingly, the phage-targeting spacers belonged to the group-A and plasmid-targeting spacers to the group-B CRISPR loci. Further analyses of the spacer targets led to the identification of an S. Typhi protospacer adjacent motif (PAM) sequence, TTTCA/T. New cas-genes known as DinG, DEDDh, and WYL were also discovered in the S. Typhi genome. However, a specific variant of the WYL gene was only identified in the extensively drug-resistant (XDR) lineage from Pakistan and ciprofloxacin-resistant lineage from Bangladesh. From this work, we conclude that there are strong correlations between variations identified in the S. Typhi CRISPR-Cas system and endemic AMR positive S. Typhi isolates

    Tracking the emergence of azithromycin resistance in multiple genotypes of typhoidal salmonella

    Get PDF
    The rising prevalence of antimicrobial resistance in Salmonella enterica serovars Typhi and Paratyphi A, causative agents of typhoid and paratyphoid, have led to fears of untreatable infections. Of specific concern is the emerging resistance against azithromycin, the only remaining oral drug to treat extensively drug resistant (XDR) typhoid. Since the first report of azithromycin resistance from Bangladesh in 2019, cases have been reported from Nepal, India, and Pakistan. The genetic basis of this resistance is a single point mutation in the efflux pump AcrB (R717Q/L). Here, we report 38 additional cases of azithromycin-resistant (AzmR) Salmonella Typhi and Paratyphi A isolated in Bangladesh between 2016 and 2018. Using genomic analysis of 56 AzmR isolates from South Asia with AcrB-R717Q/L, we confirm that this mutation has spontaneously emerged in different Salmonella Typhi and Paratyphi A geno-types. The largest cluster of AzmR Typhi belonged to genotype 4.3.1.1; Bayesian analysis predicts the mutation to have emerged sometime in 2010. A travel-related Typhi isolate with AcrB-R717Q belonging to 4.3.1.1 was isolated in the United Kingdom, increasing fears of global spread. For real-time detection of AcrB-R717Q/L, we developed an extraction-free, rapid, and low-cost mismatch amplification mutation assay (MAMA). Validation of MAMA using 113 AzmR and non-AzmR isolates yielded >98% specificity and sensitivity versus phenotypic and whole-genome sequencing assays currently used for azithromycin resistance detection

    Salmonella enterica Serovar Typhi in Bangladesh: Exploration of Genomic Diversity and Antimicrobial Resistance

    Get PDF
    Typhoid fever, caused by Salmonella enterica serovar Typhi, is a global public health concern due to increasing antimicrobial resistance (AMR). Characterization of S Typhi genomes for AMR and the evolution of different lineages, especially in countries where typhoid fever is endemic such as Bangladesh, will help public health professionals to better design and implement appropriate preventive measures. We studied whole-genome sequences (WGS) of 536 S Typhi isolates collected in Bangladesh during 1999 to 2013 and compared those sequences with data from a recent outbreak in Pakistan reported previously by E. J. Klemm, S. Shakoor, A. J. Page, F. N. Qamar, et al. (mBio 9:e00105-18, 2018, https://doi.org/10.1128/mBio.00105-18), and a laboratory surveillance in Nepal reported previously by C. D. Britto, Z. A. Dyson, S. Duchene, M. J. Carter, et al. [PLoS Negl. Trop. Dis. 12(4):e0006408, 2018, https://doi.org/10.1371/journal.pntd.0006408]. WGS had high sensitivity and specificity for prediction of ampicillin, chloramphenicol, co-trimoxazole, and ceftriaxone AMR phenotypes but needs further impr
    corecore