284 research outputs found

    Transport of Surface States in the Bulk Quantum Hall Effect

    Full text link
    The two-dimensional surface of a coupled multilayer integer quantum Hall system consists of an anisotropic chiral metal. This unusual metal is characterized by ballistic motion transverse and diffusive motion parallel (\hat{z}) to the magnetic field. Employing a network model, we calculate numerically the phase coherent two-terminal z-axis conductance and its mesoscopic fluctuations. Quasi-1d localization effects are evident in the limit of many layers. We consider the role of inelastic de-phasing effects in modifying the transport of the chiral surface sheath, discussing their importance in the recent experiments of Druist et al.Comment: 9 pages LaTex, 9 postscript figures included using eps

    Sensitivity of the g-mode frequencies to pulsation codes and their parameters

    Full text link
    From the recent work of the Evolution and Seismic Tools Activity (ESTA, Lebreton et al. 2006; Monteiro et al. 2008), whose Task 2 is devoted to compare pulsational frequencies computed using most of the pulsational codes available in the asteroseismic community, the dependence of the theoretical frequencies with non-physical choices is now quite well fixed. To ensure that the accuracy of the computed frequencies is of the same order of magnitude or better than the observational errors, some requirements in the equilibrium models and the numerical resolutions of the pulsational equations must be followed. In particular, we have verified the numerical accuracy obtained with the Saclay seismic model, which is used to study the solar g-mode region (60 to 140μ\muHz). We have compared the results coming from the Aarhus adiabatic pulsation code (ADIPLS), with the frequencies computed with the Granada Code (GraCo) taking into account several possible choices. We have concluded that the present equilibrium models and the use of the Richardson extrapolation ensure an accuracy of the order of 0.01μHz0.01 \mu Hz in the determination of the frequencies, which is quite enough for our purposes.Comment: 10 pages, 5 figures, accepted in Solar Physic

    Open Cosmic Strings in Black Hole Space-Times

    Get PDF
    We construct open cosmic string solutions in Schwarzschild black hole and non-dilatonic black p-brane backgrounds. These strings can be thought to stretch between two D-branes or between a D-brane and the horizon in curved space-time. We study small fluctuations around these solutions and discuss their basic properties.Comment: 11 pages, REVTex, 5 figures, a reference adde

    Experimental study of weak antilocalization effect in a high mobility InGaAs/InP quantum well

    Full text link
    The magnetoresistance associated with quantum interference corrections in a high mobility, gated InGaAs/InP quantum well structure is studied as a function of temperature, gate voltage, and angle of the tilted magnetic field. Particular attention is paid to the experimental extraction of phase-breaking and spin-orbit scattering times when weak anti- localization effects are prominent. Compared with metals and low mobility semiconductors the characteristic magnetic field Btr=/4eDτB_{tr} = \hbar/4eD \tau in high mobility samples is very small and the experimental dependencies of the interference effects extend to fields several hundreds of times larger. Fitting experimental results under these conditions therefore requires theories valid for arbitrary magnetic field. It was found, however, that such a theory was unable to fit the experimental data without introducing an extra, empirical, scale factor of about 2. Measurements in tilted magnetic fields and as a function of temperature established that both the weak localization and the weak anti-localization effects have the same, orbital origin. Fits to the data confirmed that the width of the low field feature, whether a weak localization or a weak anti-localization peak, is determined by the phase-breaking time and also established that the universal (negative) magnetoresistance observed in the high field limit is associated with a temperature independent spin-orbit scattering time.Comment: 13 pages including 10 figure

    Anomalous Superconducting Properties and Field Induced Magnetism in CeCoIn5

    Full text link
    In the heavy fermion superconductor CeCoIn5 (Tc=2.3K) the critical field is large, anisotropic and displays hysteresis. The magnitude of the critical-field anisotropy in the a-c plane can be as large as 70 kOe and depends on orientation. Critical field measurements in the (110) plane suggest 2D superconductivity, whereas conventional effective mass anisotropy is observed in the (100) plane. Two distinct field-induced magnetic phases are observed: Ha appears deep in the superconducting phase, while Hb intersects Hc2 at T=1.4 K and extends well above Tc. These observations suggest the possible realization of a direct transition from ferromagnetism to Fulde-Ferrel-Larkin-Ovchinnikov superconductivity in CeCoIn5.Comment: 4 pages, 3 figure

    Diamagnetic Persistent Currents and Spontaneous Time-Reversal Symmetry Breaking in Mesoscopic Structures

    Full text link
    Recently, new strongly interacting phases have been uncovered in mesoscopic systems with chaotic scattering at the boundaries by two of the present authors and R. Shankar. This analysis is reliable when the dimensionless conductance of the system is large, and is nonperturbative in both disorder and interactions. The new phases are the mesoscopic analogue of spontaneous distortions of the Fermi surface induced by interactions in bulk systems and can occur in any Fermi liquid channel with angular momentum mm. Here we show that the phase with mm even has a diamagnetic persistent current (seen experimentally but mysterious theoretically), while that with mm odd can be driven through a transition which spontaneously breaks time-reversal symmetry by increasing the coupling to dissipative leads.Comment: 4 pages, three eps figure

    Evidence for orbital ordering in LaCoO3

    Get PDF
    We present powder and single crystal X-ray diffraction data as evidence for a monoclinic distortion in the low spin (S=0) and intermediate spin state (S=1) of LaCoO3. The alternation of short and long bonds in the ab plane indicates the presence of eg orbital ordering induced by a cooperative Jahn-Teller distortion. We observe an increase of the Jahn-Teller distortion with temperature in agreement with a thermally activated behavior of the Co3+ ions from a low-spin ground state to an intermediate-spin excited state.Comment: Accepted to Phys. Rev.

    Local fluctuations in quantum critical metals

    Full text link
    We show that spatially local, yet low-energy, fluctuations can play an essential role in the physics of strongly correlated electron systems tuned to a quantum critical point. A detailed microscopic analysis of the Kondo lattice model is carried out within an extended dynamical mean-field approach. The correlation functions for the lattice model are calculated through a self-consistent Bose-Fermi Kondo problem, in which a local moment is coupled both to a fermionic bath and to a bosonic bath (a fluctuating magnetic field). A renormalization-group treatment of this impurity problem--perturbative in ϵ=1γ\epsilon=1-\gamma, where γ\gamma is an exponent characterizing the spectrum of the bosonic bath--shows that competition between the two couplings can drive the local-moment fluctuations critical. As a result, two distinct types of quantum critical point emerge in the Kondo lattice, one being of the usual spin-density-wave type, the other ``locally critical.'' Near the locally critical point, the dynamical spin susceptibility exhibits ω/T\omega/T scaling with a fractional exponent. While the spin-density-wave critical point is Gaussian, the locally critical point is an interacting fixed point at which long-wavelength and spatially local critical modes coexist. A Ginzburg-Landau description for the locally critical point is discussed. It is argued that these results are robust, that local criticality provides a natural description of the quantum critical behavior seen in a number of heavy-fermion metals, and that this picture may also be relevant to other strongly correlated metals.Comment: 20 pages, 12 figures; typos in figure 3 and in the main text corrected, version as publishe

    A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade

    Full text link
    We provide a framework for analyzing the problem of interacting electrons in a ballistic quantum dot with chaotic boundary conditions within an energy ETE_T (the Thouless energy) of the Fermi energy. Within this window we show that the interactions can be characterized by Landau Fermi liquid parameters. When gg, the dimensionless conductance of the dot, is large, we find that the disordered interacting problem can be solved in a saddle-point approximation which becomes exact as gg\to\infty (as in a large-N theory). The infinite gg theory shows a transition to a strong-coupling phase characterized by the same order parameter as in the Pomeranchuk transition in clean systems (a spontaneous interaction-induced Fermi surface distortion), but smeared and pinned by disorder. At finite gg, the two phases and critical point evolve into three regimes in the um1/gu_m-1/g plane -- weak- and strong-coupling regimes separated by crossover lines from a quantum-critical regime controlled by the quantum critical point. In the strong-coupling and quantum-critical regions, the quasiparticle acquires a width of the same order as the level spacing Δ\Delta within a few Δ\Delta's of the Fermi energy due to coupling to collective excitations. In the strong coupling regime if mm is odd, the dot will (if isolated) cross over from the orthogonal to unitary ensemble for an exponentially small external flux, or will (if strongly coupled to leads) break time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we are treating charge-channel instabilities in spinful systems, leaving spin-channel instabilities for future work. No substantive results are change

    The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation

    Get PDF
    We give a theoretical analysis of published experimental studies of the effects of impurities and disorder on the superconducting transition temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X (where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3). The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by magnetic impurities in singlet superconductors, including s-wave superconductors and by non-magnetic impurities in a non-s-wave superconductor. We show that various sources of disorder lead to the suppression of T_c as described by the AG formula. This is confirmed by the excellent fit to the data, the fact that these materials are in the clean limit and the excellent agreement between the value of the interlayer hopping integral, t_perp, calculated from this fit and the value of t_perp found from angular-dependant magnetoresistance and quantum oscillation experiments. If the disorder is, as seems most likely, non-magnetic then the pairing state cannot be s-wave. We show that the cooling rate dependence of the magnetisation is inconsistent with paramagnetic impurities. Triplet pairing is ruled out by several experiments. If the disorder is non-magnetic then this implies that l>=2, in which case Occam's razor suggests that d-wave pairing is realised. Given the proximity of these materials to an antiferromagnetic Mott transition, it is possible that the disorder leads to the formation of local magnetic moments via some novel mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave superconductors or else they display a novel mechanism for the formation of localised moments. We suggest systematic experiments to differentiate between these scenarios.Comment: 18 pages, 5 figure
    corecore