12 research outputs found

    Size- and temperature-independence of minimum life-supporting metabolic rates

    No full text
    1. Mass-specific metabolic rates of 173 animal species under various conditions of prolonged food deprivation (aestivation, hibernation, sit-and-wait existence) and/or living at temperatures near the freezing point of water were analysed. 2. These minimum life-supporting metabolic rates are independent of body mass over a nearly 80-million-fold body mass range and independent of temperature over a range of -1.7 to 30°C, with a mean value of 0.1 W kg -1 and 95% CI from 0.02 to 0.67 W kg-1. 3. Additionally, 66 measurements of anoxic metabolic rates in 32 species capable of surviving at least 1 h of anoxia were analysed. While similarly mass-independent, anoxic metabolic rates are significantly more widely scattered (1200-fold 95% CI); they are on average one order of magnitude lower than during normoxia and depend on temperature with Q10 = 2.8. 4. Energy losses at the time of 50% mortality during anoxia are 30-300 times smaller than the energy losses tolerated by normoxic organisms in the various energy-saving regimes studied. 5. These principal differences form the basis for proposing two alternative strategies by which organisms survive environmental stress: the regime of abandoned metabolic control ('slow death'), when, as in anoxic obligate aerobes, measured rates of energy dissipation can predominantly reflect chaotic processes of tissue degradation rather than meaningful biochemical reactions; and the regime of minimum metabolic control, when biochemical order is sustained at the expense of ordered metabolic reactions. Death or survival in the regime of abandoned metabolic control is dictated by the amount of accumulated biochemical damage and not by the available energy resources, as it is in the regime of minimum metabolic control. © 2006 British Ecological Society.Articl

    Vegetation Impact on Atmospheric Moisture Transport under Increasing Land-Ocean Temperature Contrasts

    No full text
    Destabilization of the water cycle threatens human lives and livelihoods. Meanwhile our understanding of whether and how changes in vegetation cover could trigger abrupt transitions in moisture regimes remains incomplete. This challenge calls for better evidence as well as for the theoretical concepts to describe it. Here we briefly summarise the theoretical questions surrounding the role of vegetation cover in the dynamics of a moist atmosphere. We discuss the previously unrecognized sensitivity of local wind power to condensation rate as revealed by our analysis of the continuity equation for a gas mixture. Using the framework of condensation-induced atmospheric dynamics, we then show that with the temperature contrast between land and ocean increasing up to a critical threshold, ocean-to-land moisture transport reaches a tipping point where it can stop or even reverse. Land-ocean temperature contrasts are affected by both global and regional processes, in particular, by the surface fluxes of sensible and latent heat that are strongly influenced by vegetation. Our results clarify how a disturbance of natural vegetation cover, e.g., by deforestation, can disrupt large-scale atmospheric circulation and moisture transport. In view of the increasing pressure on natural ecosystems, successful strategies of mitigating climate change require taking into account the impact of vegetation on moist atmospheric dynamics. Our analysis provides a theoretical framework to assess this impact. The available data for Eurasia indicate that the observed climatological land-ocean temperature contrasts are close to the threshold. This can explain the increasing fluctuations in the continental water cycle including droughts and floods and signifies a yet greater potential importance for large-scale forest conservation

    Vegetation impact on atmospheric moisture transport under increasing land-ocean temperature contrasts

    No full text
    Destabilization of the water cycle threatens human lives and livelihoods. Meanwhile our understanding of whether and how changes in vegetation cover could trigger transitions in moisture availability remains incomplete. This challenge calls for better evidence as well as for the theoretical concepts to describe it. Here we briefly summarize the theoretical questions surrounding the role of vegetation cover in the dynamics of a moist atmosphere. We discuss the previously unrecognized sensitivity of local wind power to condensation rate as revealed by our analysis of the continuity equation for a gas mixture. Using the framework of condensation-induced atmospheric dynamics, we then show that with the temperature contrast between land and ocean increasing up to a critical threshold, ocean-to-land moisture transport reaches a tipping point where it can stop or even reverse. Land-ocean temperature contrasts are affected by both global and regional processes, in particular, by the surface fluxes of sensible and latent heat that are strongly influenced by vegetation. Our results clarify how a disturbance of natural vegetation cover, e.g., by deforestation, can disrupt large-scale atmospheric circulation and moisture transport: an increase of sensible heat flux upon deforestation raises land surface temperature and this can elevate the temperature difference between land and ocean beyond the threshold. In view of the increasing pressure on natural ecosystems, successful strategies of mitigating climate change require taking into account the impact of vegetation on moist atmospheric dynamics. Our analysis provides a theoretical framework to assess this impact. The available data for the Northern Hemisphere indicate that the observed climatological land-ocean temperature contrasts are close to the threshold. This can explain the increasing fluctuations in the continental water cycle including droughts and floods and signifies a yet greater potential importance for large-scale forest conservation

    Ecological, functional, and thermodynamic prerequisites and consequences of the origin and development of homoiothermy: A case study of avian energetics

    No full text
    corecore