9,740 research outputs found
Magnetic Phase Diagram of the Ferromagnetically Stacked Triangular XY Antiferromagnet: A Finite-Size Scaling Study
Histogram Monte-Carlo simulation results are presented for the magnetic-field
-- temperature phase diagram of the XY model on a stacked triangular lattice
with antiferromagnetic intraplane and ferromagnetic interplane interactions.
Finite-size scaling results at the various transition boundaries are consistent
with expectations based on symmetry arguments. Although a molecular-field
treatment of the Hamiltonian fails to reproduce the correct structure for the
phase diagram, it is demonstrated that a phenomenological Landau-type
free-energy model contains all the esstential features. These results serve to
complement and extend our earlier work [Phys. Rev. B {\bf 48}, 3840 (1993)].Comment: 5 pages (RevTex 3.0), 6 figures available upon request, CRPS 93-
Magnetic-Field Induced First-Order Transition in the Frustrated XY Model on a Stacked Triangular Lattice
The results of extensive Monte Carlo simulations of magnetic-field induced
transitions in the xy model on a stacked triangular lattice with
antiferromagnetic intraplane and ferromagnetic interplane interactions are
discussed. A low-field transition from the paramagnetic to a 3-state (Potts)
phase is found to be very weakly first order with behavior suggesting
tricriticality at zero field. In addition to clarifying some long-standing
ambiguity concerning the nature of this Potts-like transition, the present work
also serves to further our understanding of the critical behavior at ,
about which there has been much controversy.Comment: 10 pages (RevTex 3.0), 4 figures available upon request, CRPS-93-0
Quasiballistic correction to the density of states in three-dimensional metal
We study the exchange correction to the density of states in the
three-dimensional metal near the Fermi energy. In the ballistic limit, when the
distance to the Fermi level exceeds the inverse transport relaxation time
, we find the correction linear in the distance from the Fermi level.
By a large parameter this ballistic correction exceeds
the diffusive correction obtained earlier.Comment: 2 pages, 1 figur
The Upper Critical Field in Disordered Two-Dimensional Superconductors
We present calculations of the upper critical field in superconducting films
as a function of increasing disorder (as measured by the normal state
resistance per square). In contradiction to previous work, we find that there
is no anomalous low-temperature positive curvature in the upper critical field
as disorder is increased. We show that the previous prediction of this effect
is due to an unjustified analytical approximation of sums occuring in the
perturbative calculation. Our treatment includes both a careful analysis of
first-order perturbation theory, and a non-perturbative resummation technique.
No anomalous curvature is found in either case. We present our results in
graphical form.Comment: 11 pages, 8 figure
Simulation of Potts models with real q and no critical slowing down
A Monte Carlo algorithm is proposed to simulate ferromagnetic q-state Potts
model for any real q>0. A single update is a random sequence of disordering and
deterministic moves, one for each link of the lattice. A disordering move
attributes a random value to the link, regardless of the state of the system,
while in a deterministic move this value is a state function. The relative
frequency of these moves depends on the two parameters q and beta. The
algorithm is not affected by critical slowing down and the dynamical critical
exponent z is exactly vanishing. We simulate in this way a 3D Potts model in
the range 2<q<3 for estimating the critical value q_c where the thermal
transition changes from second-order to first-order, and find q_c=2.620(5).Comment: 5 pages, 3 figures slightly extended version, to appear in Phys. Rev.
Very large dielectric response of thin ferroelectric films with the dead layers
We study the dielectric response of ferroelectric (FE) thin films with "dead"
dielectric layer at the interface with electrodes. The domain structure
inevitably forms in the FE film in presence of the dead layer. As a result, the
effective dielectric constant of the capacitor increases
abruptly when the dead layer is thin and, consequently, the pattern of
180-degree domains becomes "soft". We compare the exact results for this
problem with the description in terms of a popular "capacitor" model, which is
shown to give qualitatively incorrect results. We relate the present results to
fatigue observed in thin ferroelectric films.Comment: 5 pages, REVTeX 3.1 with one eps-figure. A note added that the linear
response is not changed by electromechanical effect. To appear in Phys. Rev.
Flat histogram simulation of lattice polymer systems
We demonstrate the use of a new algorithm called the Flat Histogram sampling
algorithm for the simulation of lattice polymer systems. Thermodynamics
properties, such as average energy or entropy and other physical quantities
such as end-to-end distance or radius of gyration can be easily calculated
using this method. Ground-state energy can also be determined. We also explore
the accuracy and limitations of this method.
Key words: Monte Carlo algorithms, flat histogram sampling, HP model, lattice
polymer systemsComment: 7 RevTeX two-column page
Quantum fluctuations of classical skyrmions in quantum Hall Ferromagnets
In this article, we discuss the effect of the zero point quantum fluctuations
to improve the results of the minimal field theory which has been applied to
study %SMG the skyrmions in the quantum Hall systems. Our calculation which is
based on the semiclassical treatment of the quantum fluctuations, shows that
the one-loop quantum correction provides more accurate results for the minimal
field theory.Comment: A few errors are corrected. Accepted for publication in Rapid
Communication, Phys. Rev.
Superoscillations and tunneling times
It is proposed that superoscillations play an important role in the
interferences which give rise to superluminal effects. To exemplify that, we
consider a toy model which allows for a wave packet to travel, in zero time and
negligible distortion a distance arbitrarily larger than the width of the wave
packet. The peak is shown to result from a superoscillatory superposition at
the tail. Similar reasoning applies to the dwell time.Comment: 12 page
EYM equations in the presence of q-stars
We study Einstein-Yang-Mills equations in the presence of gravitating
non-topological soliton field configurations, of q-ball type. We produce
numerical solutions, stable with respect to gravitational collapse and to
fission into free particles, and we study the effect of the field strength and
the eigen-frequency to the soliton parameters. We also investigate the
formation of such soliton stars when the spacetime is asymptotically anti de
Sitter.Comment: 11 pages, to appear in Phys. Rev.
- …
