134 research outputs found
Recommended from our members
Data compression in the presence of observational error correlations
Numerical weather prediction (NWP) models are moving towards km-scale (and smaller) resolutions in order to forecast high-impact weather. As the resolution of NWP models increase the need for high-resolution observations to constrain these models also increases. A major hurdle to the assimilation of dense observations in NWP is the presence of non-negligible observation error correlations (OECs). Despite the difficulty in estimating these error correlations, progress is being made, with centres around the world now explicitly accounting for OECs in a variety of observation types. This paper explores how to make efficient use of this potentially dramatic increase in the amount of data available for assimilation.
In an idealised framework it is illustrated that as the length-scales of the OECs increase the scales that the analysis is most sensitive to the observations become smaller. This implies that a denser network of observations is more beneficial with increasing OEC length-scales. However, the computational and storage burden associated with such a dense network may not be feasible. To reduce the amount of data, a compression technique based on retaining the maximum information content of the observations can be used. When the OEC length-scales are large (in comparison to the prior error correlations), the data compression will select observations of the smaller scales for assimilation whilst throwing out the larger scale information. In this case it is shown that there is a discrepancy between the observations with the maximum information and those that minimise the analysis error variances.
Experiments are performed using the Ensemble Kalman Filter and the Lorenz-1996 model, comparing different forms of data reduction. It is found that as the OEC length-scales increase the assimilation becomes more sensitive to the choice of data reduction technique
Quantum Error Correction via Convex Optimization
We show that the problem of designing a quantum information error correcting
procedure can be cast as a bi-convex optimization problem, iterating between
encoding and recovery, each being a semidefinite program. For a given encoding
operator the problem is convex in the recovery operator. For a given method of
recovery, the problem is convex in the encoding scheme. This allows us to
derive new codes that are locally optimal. We present examples of such codes
that can handle errors which are too strong for codes derived by analogy to
classical error correction techniques.Comment: 16 page
Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"
``EIT waves" are large-scale coronal bright fronts (CBFs) that were first
observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging
Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}.
Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that
propagate pseudo-radially across the solar disk at velocities of 100--700 km
s with front widths of 50-100 Mm. As their speed is greater than the
quiet coronal sound speed (200 km s) and comparable to the
local Alfv\'{e}n speed (1000 km s), they were initially
interpreted as fast-mode magnetoacoustic waves ().
Their propagation is now known to be modified by regions where the magnetosonic
sound speed varies, such as active regions and coronal holes, but there is also
evidence for stationary CBFs at coronal hole boundaries. The latter has led to
the suggestion that they may be a manifestation of a processes such as Joule
heating or magnetic reconnection, rather than a wave-related phenomena. While
the general morphological and kinematic properties of CBFs and their
association with coronal mass ejections have now been well described, there are
many questions regarding their excitation and propagation. In particular, the
theoretical interpretation of these enigmatic events as magnetohydrodynamic
waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure
On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode
A major, albeit serendipitous, discovery of the SOlar and Heliospheric
Observatory mission was the observation by the Extreme Ultraviolet Telescope
(EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating
over a significant fraction of the Sun's surface. These so-called EIT or EUV
waves are associated with eruptive phenomena and have been studied intensely.
However, their wave nature has been challenged by non-wave (or pseudo-wave)
interpretations and the subject remains under debate. A string of recent solar
missions has provided a wealth of detailed EUV observations of these waves
bringing us closer to resolving their nature. With this review, we gather the
current state-of-art knowledge in the field and synthesize it into a picture of
an EUV wave driven by the lateral expansion of the CME. This picture can
account for both wave and pseudo-wave interpretations of the observations, thus
resolving the controversy over the nature of EUV waves to a large degree but
not completely. We close with a discussion of several remaining open questions
in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for
publicatio
Comparison of some Reduced Representation Approximations
In the field of numerical approximation, specialists considering highly
complex problems have recently proposed various ways to simplify their
underlying problems. In this field, depending on the problem they were tackling
and the community that are at work, different approaches have been developed
with some success and have even gained some maturity, the applications can now
be applied to information analysis or for numerical simulation of PDE's. At
this point, a crossed analysis and effort for understanding the similarities
and the differences between these approaches that found their starting points
in different backgrounds is of interest. It is the purpose of this paper to
contribute to this effort by comparing some constructive reduced
representations of complex functions. We present here in full details the
Adaptive Cross Approximation (ACA) and the Empirical Interpolation Method (EIM)
together with other approaches that enter in the same category
Signatures of the slow solar wind streams from active regions in the inner corona
Some of local sources of the slow solar wind can be associated with
spectroscopically detected plasma outflows at edges of active regions
accompanied with specific signatures in the inner corona. The EUV telescopes
(e.g. SPIRIT/CORONAS-F, TESIS/CORONAS-Photon and SWAP/PROBA2) sometimes
observed extended ray-like structures seen at the limb above active regions in
1MK iron emission lines and described as "coronal rays". To verify the
relationship between coronal rays and plasma outflows, we analyze an isolated
active region (AR) adjacent to small coronal hole (CH) observed by different
EUV instruments in the end of July - beginning of August 2009. On August 1 EIS
revealed in the AR two compact outflows with the Doppler velocities V =10-30
km/s accompanied with fan loops diverging from their regions. At the limb the
ARCH interface region produced coronal rays observed by EUVI/STEREO-A on July
31 as well as by TESIS on August 7. The rays were co-aligned with open magnetic
field lines expanded to the streamer stalks. Using the DEM analysis, it was
found that the fan loops diverged from the outflow regions had the dominant
temperature of ~1 MK, which is similar to that of the outgoing plasma streams.
Parameters of the solar wind measured by STEREO-B, ACE, WIND, STEREO-A were
conformed with identification of the ARCH as a source region at the
Wang-Sheeley-Arge map of derived coronal holes for CR 2086. The results of the
study support the suggestion that coronal rays can represent signatures of
outflows from ARs propagating in the inner corona along open field lines into
the heliosphere.Comment: Accepted for publication in Solar Physics; 31 Pages; 13 Figure
Coherent electron-phonon coupling and polaron-like transport in molecular wires
We present a technique to calculate the transport properties through
one-dimensional models of molecular wires. The calculations include inelastic
electron scattering due to electron-lattice interaction. The coupling between
the electron and the lattice is crucial to determine the transport properties
in one-dimensional systems subject to Peierls transition since it drives the
transition itself. The electron-phonon coupling is treated as a quantum
coherent process, in the sense that no random dephasing due to electron-phonon
interactions is introduced in the scattering wave functions. We show that
charge carrier injection, even in the tunneling regime, induces lattice
distortions localized around the tunneling electron. The transport in the
molecular wire is due to polaron-like propagation. We show typical examples of
the lattice distortions induced by charge injection into the wire. In the
tunneling regime, the electron transmission is strongly enhanced in comparison
with the case of elastic scattering through the undistorted molecular wire. We
also show that although lattice fluctuations modify the electron transmission
through the wire, the modifications are qualitatively different from those
obtained by the quantum electron-phonon inelastic scattering technique. Our
results should hold in principle for other one-dimensional atomic-scale wires
subject to Peierls transitions.Comment: 21 pages, 8 figures, accepted for publication in Phys. Rev. B (to
appear march 2001
Two-sided Grassmann-Rayleigh quotient iteration
The two-sided Rayleigh quotient iteration proposed by Ostrowski computes a
pair of corresponding left-right eigenvectors of a matrix . We propose a
Grassmannian version of this iteration, i.e., its iterates are pairs of
-dimensional subspaces instead of one-dimensional subspaces in the classical
case. The new iteration generically converges locally cubically to the pairs of
left-right -dimensional invariant subspaces of . Moreover, Grassmannian
versions of the Rayleigh quotient iteration are given for the generalized
Hermitian eigenproblem, the Hamiltonian eigenproblem and the skew-Hamiltonian
eigenproblem.Comment: The text is identical to a manuscript that was submitted for
publication on 19 April 200
Norms, Networks, Power, and Control: Understanding Informal Payments and Brokerage in Cross-Border Trade in Sierra Leone
Recent research has cast light on the variety of informal payments and practices that govern the day-to-day interactions between traders and customs agents at border posts in low-income countries. Building on this literature, this paper draws on survey and qualitative evidence in an effort to explore which groups are most advantaged and disadvantaged by the largely informal processes and norms governing cross-border trade. We find that understanding variation in strategies and outcomes across traders can only be effectively understood with reference to the importance of norms, networks, power, and the logic of control.Department for International DevelopmentBill and Melinda Gates Foundatio
Cumulative burden of depression and all-cause mortality in women living with human immunodeficiency virus
Background Research linking depression to mortality among people living with human immunodeficiency virus (PLWH) has largely focused on binary "always vs never" characterizations of depression. However, depression is chronic and is likely to have cumulative effects on mortality over time. Quantifying depression as a cumulative exposure may provide a better indication of the clinical benefit of enhanced depression treatment protocols delivered in HIV care settings. Methods Women living with HIV (WLWH), naive to antiretroviral therapy, from the Women's Interagency HIV Study were followed from their first visit in or after 1998 for up to 10 semiannual visits (5 years). Depressive symptoms were assessed using the Center for Epidemiologic Studies Depression (CES-D) scale. An area-under-the-curve approach was used to translate CES-D scores into a time-updated measure of cumulative days with depression (CDWD). We estimated the effect of CDWD on all-cause mortality using marginal structural Cox proportional hazards models. Results Overall, 818 women contributed 3292 woman-years over a median of 4.8 years of follow-up, during which the median (interquartile range) CDWD was 366 (97-853). Ninety-four women died during follow-up (2.9 deaths/100 woman-years). A dose-response relationship was observed between CDWD and mortality. Each additional 365 days spent with depression increased mortality risk by 72% (hazard ratio, 1.72; 95% confidence interval, 1.34-2.20). Conclusions In this sample of WLWH, increased CDWD elevated mortality rates in a dose-response fashion. More frequent monitoring and enhanced depression treatment protocols designed to reduce CDWD may interrupt the accumulation of mortality risk among WLWH
- …