3 research outputs found

    Equianalytic and equisingular families of curves on surfaces

    Get PDF
    We consider flat families of reduced curves on a smooth surface S such that each member C has the same number of singularities of fixed singularity types and the corresponding (locally closed) subscheme H of the Hilbert scheme of S. We are mainly concerned with analytic resp. topological singularity types and give a sufficient condition for the smoothness of H (at C). Our results for S=P^2 seem to be quite sharp for families of cuves of small degree d.Comment: LaTeX v 2.0

    On the Number of Zeros of Abelian Integrals: A Constructive Solution of the Infinitesimal Hilbert Sixteenth Problem

    Full text link
    We prove that the number of limit cycles generated by a small non-conservative perturbation of a Hamiltonian polynomial vector field on the plane, is bounded by a double exponential of the degree of the fields. This solves the long-standing tangential Hilbert 16th problem. The proof uses only the fact that Abelian integrals of a given degree are horizontal sections of a regular flat meromorphic connection (Gauss-Manin connection) with a quasiunipotent monodromy group.Comment: Final revisio
    corecore