3 research outputs found

    A dynamic connection between centromeres and ND10 proteins

    No full text
    ND10, otherwise known as nuclear dots, PML nuclear bodies or PODs, are punctate foci in interphase nuclei that contain several cellular proteins. The functions of ND10 have not been well defined, but they are sensitive to external stimuli such as stress and virus infection, and they are disrupted in malignant promyelocytic leukaemia cells. Herpes simplex virus type 1 regulatory protein Vmw110 induces the proteasome-dependent degradation of ND10 component proteins PML and Sp100, particularly the species of these proteins which are covalently conjugated to the ubiquitin-like protein SUMO-1. We have recently reported that Vmw110 also induces the degradation of centromere protein CENP-C with consequent disruption of centromere structure. These observations led us to examine whether there were hitherto undetected connections between ND10 and centromeres. In this paper we report that hDaxx and HP1 (which have been shown to interact with CENP-C and Sp100, respectively) are present in a proportion of both ND10 and interphase centromeres. Furthermore, the proteasome inhibitor MG132 induced an association between centromeres and ND10 proteins PML and Sp100 in a significant number of cells in the G(2) phase of the cell cycle. These results imply that there is a dynamic, cell cycle regulated connection between centromeres and ND10 proteins which can be stabilised by inhibition of proteasome-mediated proteolysis

    Localization, Dynamics, and Function of Survivin Revealed by Expression of Functional SurvivinDsRed Fusion Proteins in the Living Cell

    No full text
    Survivin, a member of the inhibitor of apoptosis protein family, has attracted growing attention due to its expression in various tumors and its potential application in tumor therapy. However, its subcellular localization and function have remained controversial: Recent studies revealed that survivin is localized at the mitotic spindle, binds caspases, and could thus protect cells from apoptosis. The cell cycle-dependent expression of survivin and its antiapoptotic function led to the hypothesis that survivin connects the cell cycle with apoptosis, thus providing a death switch for the termination of defective mitosis. In other studies, survivin was detected at kinetochores, cleavage furrow, and midbody, localizations being characteristic for chromosomal passenger proteins. These proteins are involved in cytokinesis as inferred from the observation that RNA interference and expression of mutant proteins led to cytokinesis defects without an increase in apoptosis. To remedy these discrepancies, we analyzed the localizations of a survivinDsRed fusion protein in HeLa cells by using confocal laser scanning microscopy and time-lapse video imaging. SurvivinDsRed was excluded from the interphase nucleus and was detected in centrosomes and at kinetochores. It dissociated from chromosomes at the anaphase/telophase transition and accumulated at the ends of polar microtubuli where it was immediately condensed to the midbody. Overexpression of both survivinDsRed and of a phosphorylation-defective mutant conferred resistance against apoptosis-inducing reagents, but only the overexpressed mutant protein caused an aberrant cytokinesis. These data characterize in detail the dynamics of survivin in vertebrate cells and confirm that survivin represents a chromosomal passenger protein

    Branching Morphogenesis in Vertebrate Neurons

    No full text
    corecore