1 research outputs found
In-plane dipole coupling anisotropy of a square ferromagnetic Heisenberg monolayer
In this study we calculate the dipole-coupling-induced quartic in-plane
anisotropy of a square ferromagnetic Heisenberg monolayer. This anisotropy
increases with an increasing temperature, reaching its maximum value close to
the Curie temperature of the system. At T=0 the system is isotropic, besides a
small remaining anisotropy due to the zero-point motion of quantum mechanical
spins. The reason for the dipole-coupling-induced anisotropy is the disturbance
of the square spin lattice due to thermal fluctuations ('order-by-disorder'
effect). For usual ferromagnets its strength is small as compared to other
anisotropic contributions, and decreases by application of an external magnetic
field. The results are obtained from a Heisenberg Hamiltonian by application of
a mean field approach for a spin cluster, as well as from a many-body Green's
function theory within the Tyablikov-decoupling (RPA).Comment: 6 pages, 2 figures, accepted for publication in RP