1,044 research outputs found
Experimental Lagrangian Acceleration Probability Density Function Measurement
We report experimental results on the acceleration component probability
distribution function at to probabilities of less than
. This is an improvement of more than an order of magnitude over past
measurements and allows us to conclude that the fourth moment converges and the
flatness is approximately 55. We compare our probability distribution to those
predicted by several models inspired by non-extensive statistical mechanics. We
also look at acceleration component probability distributions conditioned on a
velocity component for conditioning velocities as high as 3 times the standard
deviation and find them to be highly non-Gaussian.Comment: submitted for the special issue of Physica D: "Anomalous
Distributions" 11 pages, 6 figures revised version: light modifications of
the figures and the tex
Signatures of chaos in animal search patterns
One key objective of the emerging discipline of movement ecology is to link animal movement patternsto underlying biological processes, including those operating at the neurobiological level. Nonetheless,little is known about the physiological basis of animal movement patterns, and the underlying searchbehaviour. Here we demonstrate the hallmarks of chaotic dynamics in the movement patterns ofmud snails (Hydrobia ulvae) moving in controlled experimental conditions, observed in the temporaldynamics of turning behaviour. Chaotic temporal dynamics are known to occur in pacemaker neuronsin molluscs, but there have been no studies reporting on whether chaotic properties are manifest in themovement patterns of molluscs. Our results suggest that complex search patterns, like the Lévy walksmade by mud snails, can have their mechanistic origins in chaotic neuronal processes. This possibilitycalls for new research on the coupling between neurobiology and motor properties
An Anglo-Saxon execution cemetery at Walkington Wold, Yorkshire
This paper presents a re-evaluation of a cemetery excavated over
30 years ago at Walkington Wold in east Yorkshire. The cemetery is
characterized by careless burial on diverse alignments, and by the fact that
most of the skeletons did not have associated crania. The cemetery has been
variously described as being the result of an early post-Roman massacre, as
providing evidence for a ‘Celtic’ head cult or as an Anglo-Saxon execution
cemetery. In order to resolve the matter, radiocarbon dates were acquired and
a re-examination of the skeletal remains was undertaken. It was confirmed that
the cemetery was an Anglo-Saxon execution cemetery, the only known example
from northern England, and the site is set into its wider context in the paper
Nonextensivity of the cyclic Lattice Lotka Volterra model
We numerically show that the Lattice Lotka-Volterra model, when realized on a
square lattice support, gives rise to a {\it finite} production, per unit time,
of the nonextensive entropy . This finiteness only occurs for for the growth mode
(growing droplet), and for for the one (growing stripe). This
strong evidence of nonextensivity is consistent with the spontaneous emergence
of local domains of identical particles with fractal boundaries and competing
interactions. Such direct evidence is for the first time exhibited for a
many-body system which, at the mean field level, is conservative.Comment: Latex, 6 pages, 5 figure
Magnetic fields in supernova remnants and pulsar-wind nebulae
We review the observations of supernova remnants (SNRs) and pulsar-wind
nebulae (PWNe) that give information on the strength and orientation of
magnetic fields. Radio polarimetry gives the degree of order of magnetic
fields, and the orientation of the ordered component. Many young shell
supernova remnants show evidence for synchrotron X-ray emission. The spatial
analysis of this emission suggests that magnetic fields are amplified by one to
two orders of magnitude in strong shocks. Detection of several remnants in TeV
gamma rays implies a lower limit on the magnetic-field strength (or a
measurement, if the emission process is inverse-Compton upscattering of cosmic
microwave background photons). Upper limits to GeV emission similarly provide
lower limits on magnetic-field strengths. In the historical shell remnants,
lower limits on B range from 25 to 1000 microGauss. Two remnants show
variability of synchrotron X-ray emission with a timescale of years. If this
timescale is the electron-acceleration or radiative loss timescale, magnetic
fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition
arguments and dynamical modeling can be used to infer magnetic-field strengths
anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably
higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field
geometries often suggest a toroidal structure around the pulsar, but this is
not universal. Viewing-angle effects undoubtedly play a role. MHD models of
radio emission in shell SNRs show that different orientations of upstream
magnetic field, and different assumptions about electron acceleration, predict
different radio morphology. In the remnant of SN 1006, such comparisons imply a
magnetic-field orientation connecting the bright limbs, with a non-negligible
gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording
change in Abstrac
Truncated Levy Random Walks and Generalized Cauchy Processes
A continuous Markovian model for truncated Levy random walks is proposed. It
generalizes the approach developed previously by Lubashevsky et al. Phys. Rev.
E 79, 011110 (2009); 80, 031148 (2009), Eur. Phys. J. B 78, 207 (2010) allowing
for nonlinear friction in wondering particle motion and saturation of the noise
intensity depending on the particle velocity. Both the effects have own reason
to be considered and individually give rise to truncated Levy random walks as
shown in the paper. The nonlinear Langevin equation governing the particle
motion was solved numerically using an order 1.5 strong stochastic Runge-Kutta
method and the obtained numerical data were employed to calculate the geometric
mean of the particle displacement during a certain time interval and to
construct its distribution function. It is demonstrated that the time
dependence of the geometric mean comprises three fragments following one
another as the time scale increases that can be categorized as the ballistic
regime, the Levy type regime (superballistic, quasiballistic, or superdiffusive
one), and the standard motion of Brownian particles. For the intermediate Levy
type part the distribution of the particle displacement is found to be of the
generalized Cauchy form with cutoff. Besides, the properties of the random
walks at hand are shown to be determined mainly by a certain ratio of the
friction coefficient and the noise intensity rather then their characteristics
individually.Comment: 7 pages, 3 figure
Quantitative Behavioural Reasoning for Higher-order Effectful Programs: Applicative Distances (Extended Version)
This paper studies the quantitative refinements of Abramsky's applicative
similarity and bisimilarity in the context of a generalisation of Fuzz, a
call-by-value -calculus with a linear type system that can express
programs sensitivity, enriched with algebraic operations \emph{\`a la} Plotkin
and Power. To do so a general, abstract framework for studying behavioural
relations taking values over quantales is defined according to Lawvere's
analysis of generalised metric spaces. Barr's notion of relator (or lax
extension) is then extended to quantale-valued relations adapting and extending
results from the field of monoidal topology. Abstract notions of
quantale-valued effectful applicative similarity and bisimilarity are then
defined and proved to be a compatible generalised metric (in the sense of
Lawvere) and pseudometric, respectively, under mild conditions
A pressure swing approach to selective CO2 sequestration using functionalized hypercrosslinked polymers
Functionalized hypercrosslinked polymers (HCPs) with surface areas between 213 and 1124 m2/g based on a range of monomers containing different chemical moieties were evaluated for CO2 capture using a pressure swing adsorption (PSA) methodology under humid conditions and elevated temperatures. The networks demonstrated rapid CO2 uptake reaching maximum uptakes in under 60 s. The most promising networks demonstrating the best selectivity and highest uptakes were applied to a pressure swing setup using simulated flue gas streams. The carbazole, triphenylmethanol and triphenylamine networks were found to be capable of converting a dilute CO2 stream (>20%) into a concentrated stream (>85%) after only two pressure swing cycles from 20 bar (adsorption) to 1 bar (desorption). This work demonstrates the ease with which readily synthesized functional porous materials can be successfully applied to a pressure swing methodology and used to separate CO2 from N2 from industrially applicable simulated gas streams under more realistic conditions
Multidimensional relativistic MHD simulations of Pulsar Wind Nebulae: dynamics and emission
Pulsar Wind Nebulae, and the Crab nebula in particular, are the best cosmic
laboratories to investigate the dynamics of magnetized relativistic outflows
and particle acceleration up to PeV energies. Multidimensional MHD modeling by
means of numerical simulations has been very successful at reproducing, to the
very finest details, the innermost structure of these synchrotron emitting
nebulae, as observed in the X-rays. Therefore, the comparison between the
simulated source and observations can be used as a powerful diagnostic tool to
probe the physical conditions in pulsar winds, like their composition,
magnetization, and degree of anisotropy. However, in spite of the wealth of
observations and of the accuracy of current MHD models, the precise mechanisms
for magnetic field dissipation and for the acceleration of the non-thermal
emitting particles are mysteries still puzzling theorists to date. Here we
review the methodologies of the computational approach to the modeling of
Pulsar Wind Nebulae, discussing the most relevant results and the recent
progresses achieved in this fascinating field of high-energy astrophysics.Comment: 29 pages review, preliminary version. To appear in the book
"Modelling Nebulae" edited by D. Torres for Springer, based on the invited
contributions to the workshop held in Sant Cugat (Barcelona), June 14-17,
201
- …