74 research outputs found

    Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches

    Get PDF
    The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta (0¿ßß) decay of 136Xe using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of 0¿ßß decay better than 1027 years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond. [Figure not available: see fulltext.] © 2021, The Author(s)

    Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution

    Get PDF
    Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of ~ 1027 yr, requiring suppressing backgrounds to < 1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution and the use of extremely radiopure materials, is of utmost importance. The NEXT experiment exploits differences in the spatial ionization patterns of double beta decay and single-electron events to discriminate signal from background. While the former display two Bragg peak dense ionization regions at the opposite ends of the track, the latter typically have only one such feature. Thus, comparing the energies at the track extremes provides an additional rejection tool. The unique combination of the topology-based background discrimination and excellent energy resolution (1% FWHM at the Q-value of the decay) is the distinguishing feature of NEXT. Previous studies demonstrated a topological background rejection factor of ~ 5 when reconstructing electron-positron pairs in the 208Tl 1.6 MeV double escape peak (with Compton events as background), recorded in the NEXT-White demonstrator at the Laboratorio Subterráneo de Canfranc, with 72% signal efficiency. This was recently improved through the use of a deep convolutional neural network to yield a background rejection factor of ~ 10 with 65% signal efficiency. Here, we present a new reconstruction method, based on the Richardson-Lucy deconvolution algorithm, which allows reversing the blurring induced by electron diffusion and electroluminescence light production in the NEXT TPC. The new method yields highly refined 3D images of reconstructed events, and, as a result, significantly improves the topological background discrimination. When applied to real-data 1.6 MeV e-e+ pairs, it leads to a background rejection factor of 27 at 57% signal efficiency. [Figure not available: see fulltext.]. © 2021, The Author(s)

    Health Care Utilization During the COVID-19 Pandemic Among Individuals Born Preterm

    Get PDF
    Importance: Limited data exist on pediatric health care utilization during the COVID-19 pandemic among children and young adults born preterm. Objective: To investigate differences in health care use related to COVID-19 concerns during the pandemic among children and young adults born preterm vs those born at term. Design, Setting, and Participants: In this cohort study, questionnaires regarding COVID-19 and health care utilization were completed by 1691 mother-offspring pairs from 42 pediatric cohorts in the National Institutes of Health Environmental Influences on Child Health Outcomes Program. Children and young adults (ages 1-18 years) in these analyses were born between 2003 and 2021. Data were recorded by the August 31, 2021, data-lock date and were analyzed between October 2021 and October 2022. Exposures: Premature birth (<37 weeks' gestation). Main Outcomes and Measures: The main outcome was health care utilization related to COVID-19 concerns (hospitalization, in-person clinic or emergency department visit, phone or telehealth evaluations). Individuals born preterm vs term (≥37 weeks' gestation) and differences among preterm subgroups of individuals (<28 weeks', 28-36 weeks' vs ≥37 weeks' gestation) were assessed. Generalized estimating equations assessed population odds for health care used and related symptoms, controlling for maternal age, education, and psychiatric disorder; offspring history of bronchopulmonary dysplasia (BPD) or asthma; and timing and age at COVID-19 questionnaire completion. Results: Data from 1691 children and young adults were analyzed; among 270 individuals born preterm, the mean (SD) age at survey completion was 8.8 (4.4) years, 151 (55.9%) were male, and 193 (71.5%) had a history of BPD or asthma diagnosis. Among 1421 comparison individuals with term birth, the mean (SD) age at survey completion was 8.4 (2.4) years, 749 (52.7%) were male, and 233 (16.4%) had a history of BPD or asthma. Preterm subgroups included 159 individuals (58.5%) born at less than 28 weeks' gestation. In adjusted analyses, individuals born preterm had a significantly higher odds of health care utilization related to COVID-19 concerns (adjusted odds ratio [aOR], 1.70; 95% CI, 1.21-2.38) compared with term-born individuals; similar differences were also seen for the subgroup of individuals born at less than 28 weeks' gestation (aOR, 2.15; 95% CI, 1.40-3.29). Maternal history of a psychiatric disorder was a significant covariate associated with health care utilization for all individuals (aOR, 1.44; 95% CI, 1.17-1.78). Conclusions and Relevance: These findings suggest that during the COVID-19 pandemic, children and young adults born preterm were more likely to have used health care related to COVID-19 concerns compared with their term-born peers, independent of a history of BPD or asthma. Further exploration of factors associated with COVID-19-related health care use may facilitate refinement of care models

    The Electronics and Data Acquisition System of the DarkSide Dark Matter Search

    Full text link
    It is generally inferred from astronomical measurements that Dark Matter (DM) comprises approximately 27\% of the energy-density of the universe. If DM is a subatomic particle, a possible candidate is a Weakly Interacting Massive Particle (WIMP), and the DarkSide-50 (DS) experiment is a direct search for evidence of WIMP-nuclear collisions. DS is located underground at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, and consists of three active, embedded components; an outer water veto (CTF), a liquid scintillator veto (LSV), and a liquid argon (LAr) time projection chamber (TPC). This paper describes the data acquisition and electronic systems of the DS detectors, designed to detect the residual ionization from such collisions

    Physics for student of science and engineeering

    No full text
    xii, 804 p.; 26 cm

    Physics for students of science and engineering/ Stanford

    No full text
    xi, 799 hal. ; ind. ; 27 cm
    corecore