560 research outputs found
Analyticity of The Ground State Energy For Massless Nelson Models
We show that the ground state energy of the translationally invariant Nelson
model, describing a particle coupled to a relativistic field of massless
bosons, is an analytic function of the coupling constant and the total
momentum. We derive an explicit expression for the ground state energy which is
used to determine the effective mass.Comment: 33 pages, 1 figure, added a section on the calculation of the
effective mas
Flux-quantum-modulated Kondo conductance in a multielectron quantum dot
We investigate a lateral semiconductor quantum dot with a large number of
electrons in the limit of strong coupling to the leads. A Kondo effect is
observed and can be tuned in a perpendicular magnetic field. This Kondo effect
does not exhibit Zeeman splitting. It shows a modulation with the periodicity
of one flux quantum per dot area at low temperatures. The modulation leads to a
novel, strikingly regular stripe pattern for a wide range in magnetic field and
number of electrons.Comment: 4 pages, 5 figure
Stationarity of Inflation and Predictions of Quantum Cosmology
We describe several different regimes which are possible in inflationary
cosmology. The simplest one is inflation without self-reproduction of the
universe. In this scenario the universe is not stationary. The second regime,
which exists in a broad class of inflationary models, is eternal inflation with
the self-reproduction of inflationary domains. In this regime local properties
of domains with a given density and given values of fields do not depend on the
time when these domains were produced. The probability distribution to find a
domain with given properties in a self-reproducing universe may or may not be
stationary, depending on the choice of an inflationary model. We give examples
of models where each of these possibilities can be realized, and discuss some
implications of our results for quantum cosmology. In particular, we propose a
new mechanism which may help solving the cosmological constant problem.Comment: 30 pages, Stanford preprint SU-ITP-94-24, LaTe
Inflation with
We discuss various models of inflationary universe with . A
homogeneous universe with may appear due to creation of the
universe "from nothing" in the theories where the effective potential becomes
very steep at large , or in the theories where the inflaton field
nonminimally couples to gravity. Inflation with generally requires
intermediate first order phase transition with the bubble formation, and with a
second stage of inflation inside the bubble. It is possible to realize this
scenario in the context of a theory of one scalar field, but typically it
requires artificially bent effective potentials and/or nonminimal kinetic
terms. It is much easier to obtain an open universe in the models involving two
scalar fields. However, these models have their own specific problems. We
propose three different models of this type which can describe an open
homogeneous inflationary universe.Comment: 29 pages, LaTeX, parameters of one of the models are slightly
modifie
Dynamics of a large extra dimension inspired hybrid inflation model
In low scale quantum gravity scenarios the fundamental scale of nature can be
as low as TeV, in order to address the naturalness of the electroweak scale. A
number of difficulties arise in constructing specific models; stabilisation of
the radius of the extra dimensions, avoidance of overproduction of Kaluza Klein
modes, achieving successful baryogenesis and production of a close to
scale-invariant spectrum of density perturbations with the correct amplitude.
We examine in detail the dynamics, including radion stabilisation, of a hybrid
inflation model that has been proposed in order to address these difficulties,
where the inflaton is a gauge singlet residing in the bulk. We find that for a
low fundamental scale the phase transition, which in standard four dimensional
hybrid models usually ends inflation, is slow and there is second phase of
inflation lasting for a large number of e-foldings. The density perturbations
on cosmologically interesting scales exit the Hubble radius during this second
phase of inflation, and we find that their amplitude is far smaller than is
required. We find that the duration of the second phase of inflation can be
short, so that cosmologically interesting scales exit the Hubble radius prior
to the phase transition, and the density perturbations have the correct
amplitude, only if the fundamental scale takes an intermediate value. Finally
we comment briefly on the implications of an intermediate fundamental scale for
the production of primordial black holes and baryogenesis.Comment: 9 pages, 2 figures version to appear in Phys. Rev. D, additional
references and minor changes to discussio
Low temperature transport in AC-driven Quantum Dots in the Kondo regime
We present a fully nonequilibrium calculation of the low temperature
transport properties of a quantum dot in the Kondo regime when an AC potential
is applied to the gate voltage. We solve a time dependent Anderson model with
finite on-site Coulomb interaction. The interaction self-energy is calculated
up to second order in perturbation theory in the on-site interaction, in the
context of the Keldysh non-equilibrium technique, and the effect of the AC
voltage is taken into account exactly for all ranges of AC frequencies and AC
intensities. The obtained linear conductance and time-averaged density of
states of the quantum dot evolve in a non trivial way as a function of the AC
frequency and AC intensity of the harmonic modulation.Comment: 30 pages,7 figure
Non-equilibrium Kondo effect in asymmetrically coupled quantum dot
The quantum dot asymmetrically coupled to the external leads has been
analysed theoretically by means of the equation of motion (EOM) technique and
the non-crossing approximation (NCA). The system has been described by the
single impurity Anderson model. To calculate the conductance across the device
the non-equilibrium Green's function technique has been used. The obtained
results show the importance of the asymmetry of the coupling for the appearance
of the Kondo peak at nonzero voltages and qualitatively explain recent
experiments.Comment: 7 pages, 6 figures, Physical Review B (accepted for publication
Kondo effect in coupled quantum dots: a Non-crossing approximation study
The out-of-equilibrium transport properties of a double quantum dot system in
the Kondo regime are studied theoretically by means of a two-impurity Anderson
Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in
slave-boson language, is solved by means of a generalization of the
non-crossing approximation (NCA) to the present problem. We provide benchmark
calculations of the predictions of the NCA for the linear and nonlinear
transport properties of coupled quantum dots in the Kondo regime. We give a
series of predictions that can be observed experimentally in linear and
nonlinear transport measurements through coupled quantum dots. Importantly, it
is demonstrated that measurements of the differential conductance , for the appropriate values of voltages and inter-dot tunneling
couplings, can give a direct observation of the coherent superposition between
the many-body Kondo states of each dot. This coherence can be also detected in
the linear transport through the system: the curve linear conductance vs
temperature is non-monotonic, with a maximum at a temperature
characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure
Calibration of Super-Kamiokande Using an Electron Linac
In order to calibrate the Super-Kamiokande experiment for solar neutrino
measurements, a linear accelerator (LINAC) for electrons was installed at the
detector. LINAC data were taken at various positions in the detector volume,
tracking the detector response in the variables relevant to solar neutrino
analysis. In particular, the absolute energy scale is now known with less than
1 percent uncertainty.Comment: 24 pages, 16 figures, Submitted to NIM
Measurement of radon concentrations at Super-Kamiokande
Radioactivity from radon is a major background for observing solar neutrinos
at Super-Kamiokande. In this paper, we describe the measurement of radon
concentrations at Super-Kamiokande, the method of radon reduction, and the
radon monitoring system. The measurement shows that the current low-energy
event rate between 5.0 MeV and 6.5 MeV implies a radon concentration in the
Super-Kamiokande water of less than 1.4 mBq/m.Comment: 11 pages, 4 figure
- …