19 research outputs found

    Searching for TeV dark matter by atmospheric Cerenkov techniques

    Full text link
    There is a growing interest in the possibility that dark matter could be formed of weakly interacting particles with a mass in the 100 GeV - 2 TeV range, and supersymmetric particles are favorite candidates. If they constitute the dark halo of our Galaxy, their mutual annihilations produce energetic gamma rays that could be detected using existing atmospheric \u{C}erenkov techniques.Comment: 10 pp, LaTex (3 figures available by e-mail) PAR-LPTHE 92X

    AGAPE: a microlensing search in the direction of M31

    Get PDF
    A status report of the microlensing search by the pixel method in the direction of M31, on the 2 meter telescope at Pic du Midi is given. Pixels are stable to a level better than 0.5%. Pixel variations as small as 0.02 magnitude can clearly be detected

    AGAPEROS: Searches for microlensing in the LMC with the Pixel Method; 2, Selection of possible microlensing events

    Get PDF
    We apply the pixel method of analysis (sometimes called ``pixel lensing'') to a small subset of the EROS-1 microlensing observations of the bar of the Large Magellanic Cloud (LMC). The pixel method is designed to find microlensing events of unresolved source stars and had heretofore been applied only to M31 where essentially all sources are unresolved. With our analysis optimised for the detection of long-duration microlensing events due to 0.01-1 Mo Machos, we detect no microlensing events and compute the corresponding detection efficiencies. We show that the pixel method should detect 10 to 20 times more microlensing events for M>0.05 Mo Machos compared to a classical analysis of the same data which latter monitors only resolved stars. In particular, we show that for a full halo of Machos in the mass range 0.1 -- 0.5 Mo, a pixel analysis of the three-year EROS-1 data set covering 0.39 deg^2 would yield 4 events.We apply the pixel method of analysis (sometimes called ''pixel lensing'') to a small subset of the EROS-1 microlensing observations of the bar of the Large Magellanic Cloud (LMC). The pixel method is designed to find microlensing events of unresolved source stars and had heretofore been applied only to M31 where essentially all sources are unresolved. With our analysis optimised for the detection of long-duration microlensing events due to 0.01-1 Mo Machos, we detect no microlensing events and compute the corresponding detection efficiencies. We show that the pixel method, applied to crowded fields, should detect 10 to 20 times more microlensing events for M>0.05 Mo Machos compared to a classical analysis of the same data which latter monitors only resolved stars. In particular, we show that for a full halo of Machos in the mass range 0.1-0.5 M \bigodot, a pixel analysis of the three-year EROS-1 data set covering 0.39deg20.39deg^{2} would yield 4\simeq 4 events

    AGAPE, an experiment to detect MACHO's in the direction of the Andromeda galaxy

    No full text
    The status of the Agape experiment to detect Machos in the direction of the andromeda galaxy is presented
    corecore