53 research outputs found
A Study into Entropy-Based Thresholding for Image Edge Detection
Automated thresholding approaches have normally been applied to gray-level intensity images to differentiate between objects and the background in the image. This paper investigates the use of an entropy-based thresholding approach for determining a reasonable threshold value for an intensity gradient in an edge tracking algorithm and a threshold value for the lengths of edges extracted from an image. The histograms of the intensity gradient of an edge and the lengths of edges generally peak very quickly at low values and quickly drop as their values increase. The entropy-based thresholding technique is adequate for determining a reasonable threshold value for these type of histograms, particularly since it computes the point at which the information content of the two sides of the histogram is a maximum. The paper also demonstrates the importance of reapplying the threshold determination algorithm on different parts of the image, since the threshold value is relative to the distribution in a region of interest. The effects of sparse data on the computation of the threshold are investigated and an example is presented demonstrated the strong impact that sparse data can have.On a g\ue9n\ue9ralement appliqu\ue9 des m\ue9thodes de seuillage automatis\ue9es aux images \ue0 niveaux de gris pour diff\ue9rencier les objets et l'arri\ue8re-plan de l'image. Cet article examine l'utilisation d'une m\ue9thode de seuillage bas\ue9e sur l'entropie qui permet de d\ue9terminer une valeur seuil raisonnable du gradient d'intensit\ue9 dans un algorithme de suivi des contours et une valeur seuil pour la longueur des contours extraits d'une image. Les histogrammes du gradient d'intensit\ue9 d'un contour et la longueur des contours montent en g\ue9n\ue9ral tr\ue8s rapidement \ue0 de faibles valeurs et baissent rapidement \ue0 mesure que les valeurs augmentent. La technique de seuillage bas\ue9e sur l'entropie suffit \ue0 d\ue9terminer une valeur seuil raisonnable pour ces types d'histogrammes, particuli\ue8rement puisqu'elle calcule le point o\uf9 le contenu de l'information des deux c\uf4t\ue9s de l'histogramme est \ue0 son maximum. L'article d\ue9montre \ue9galement l'importance de r\ue9appliquer l'algorithme de d\ue9termination du seuil \ue0 diff\ue9rentes parties de l'image puisque la valeur seuil d\ue9pend de la distribution dans une r\ue9gion d'int\ue9r\ueat. Les effets de donn\ue9es clairsem\ue9es sur le calcul du seuil sont \ue9tudi\ue9es et on donne un exemple qui illustre le fort impact que ces donn\ue9es peuvent avoir.NRC publication: Ye
- …