5 research outputs found
Assessment of eosinophils in gastrointestinal inflammatory disease of dogs
Background
Accurate identification of eosinophils in the gastrointestinal (GI) tract of dogs with eosinophilic GI disease (EGID) by histological evaluation is challenging. The currently used hematoxylin and eosin (H&E) staining method detects intact eosinophils but does not detect degranulated eosinophils, thus potentially underrepresenting the number of infiltrating eosinophils.
Objective
To develop a more sensitive method for identifying and quantifying both intact and degranulated eosinophils to diagnose EGID more accurately.
Methods
Endoscopically obtained paraffinâembedded intestinal biopsy specimens from dogs with GI signs were examined. The study groups were dogs with eosinophilic enteritis (EE), lymphoplasmacytic and mixed enteritis, and control dogs with GI signs but no histologic changes on tissue sections. Consecutive sections were immunolabeled with monoclonal antibodies (mAbs) against the eosinophil granule protein eosinophil peroxidase (Epx) and stained by H&E, respectively. The number of eosinophils was manually quantified and classified as intact or degranulated.
Results
The number of intact eosinophils detected in Epx mAbâlabeled duodenal sections was significantly higher compared with that in H&Eâstained sections, with a similar relationship noted in the colon and stomach. The Epx mAb allowed the unique assessment of eosinophil degranulation. The number of intact and degranulated eosinophils was significantly higher in duodenal lamina propria of the EE and mixed group compared to the control group.
Conclusion
Immunohistochemical detection of Epx provides a more precise method to detect GI tract eosinophils compared to H&E staining and could be used as an alternative and reliable diagnostic tool for assessment of biopsy tissues from dogs with EGID
Recommended from our members
CAR/CXCR5-T cell immunotherapy is safe and potentially efficacious in promoting sustained remission of SIV infection
During chronic human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection prior to AIDS progression, the vast majority of viral replication is concentrated within B cell follicles of secondary lymphoid tissues. We investigated whether infusion of T cells expressing an SIV-specific chimeric antigen receptor (CAR) and the follicular homing receptor, CXCR5, could successfully kill viral-RNA+ cells in targeted lymphoid follicles in SIV-infected rhesus macaques. In this study, CD4 and CD8 T cells from rhesus macaques were genetically modified to express antiviral CAR and CXCR5 moieties (generating CAR/ CXCR5-T cells) and autologously infused into a chronically infected animal. At 2 days post-treatment, the CAR/CXCR5-T cells were located primarily in spleen and lymph nodes both inside and outside of lymphoid follicles. Few CAR/CXCR5-T cells were detected in the ileum, rectum, and lung, and no cells were detected in the bone marrow, liver, or brain. Within follicles, CAR/CXCR5-T cells were found in direct contact with SIV-viral RNA+ cells. We next infused CAR/CXCR5-T cells into ART-suppressed SIV-infected rhesus macaques, in which the animals were released from ART at the time of infusion. These CAR/CXCR5-T cells replicated in vivo within both the extrafollicular and follicular regions of lymph nodes and accumulated within lymphoid follicles. CAR/CXR5-T cell concentrations in follicles peaked during the first week post-infusion but declined to undetectable levels after 2 to 4 weeks. Overall, CAR/CXCR5-T cell-treated animals maintained lower viral loads and follicular viral RNA levels than untreated control animals, and no outstanding adverse reactions were noted. These findings indicate that CAR/CXCR5-T cell treatment is safe and holds promise as a future treatment for the durable remission of HIV. Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]