2 research outputs found
Surface Kinetics and Generation of Different Terms in a Conservative Growth Equation
A method based on the kinetics of adatoms on a growing surface under
epitaxial growth at low temperature in (1+1) dimensions is proposed to obtain a
closed form of local growth equation. It can be generalized to any growth
problem as long as diffusion of adatoms govern the surface morphology. The
method can be easily extended to higher dimensions. The kinetic processes
contributing to various terms in the growth equation (GE) are identified from
the analysis of in-plane and downward hops. In particular, processes
corresponding to the (h -> -h) symmetry breaking term and curvature dependent
term are discussed. Consequence of these terms on the stable and unstable
transition in (1+1) dimensions is analyzed. In (2+1) dimensions it is shown
that an additional (h -> -h) symmetry breaking term is generated due to the
in-plane curvature associated with the mound like structures. This term is
independent of any diffusion barrier differences between in-plane and out
of-plane migration. It is argued that terms generated in the presence of
downward hops are the relevant terms in a GE. Growth equation in the closed
form is obtained for various growth models introduced to capture most of the
processes in experimental Molecular Beam Epitaxial growth. Effect of
dissociation is also considered and is seen to have stabilizing effect on the
growth. It is shown that for uphill current the GE approach fails to describe
the growth since a given GE is not valid over the entire substrate.Comment: 14 pages, 7 figure
Analytical solution of generalized Burton--Cabrera--Frank equations for growth and post--growth equilibration on vicinal surfaces
We investigate growth on vicinal surfaces by molecular beam epitaxy making
use of a generalized Burton--Cabrera--Frank model. Our primary aim is to
propose and implement a novel analytical program based on a perturbative
solution of the non--linear equations describing the coupled adatom and dimer
kinetics. These equations are considered as originating from a fully
microscopic description that allows the step boundary conditions to be directly
formulated in terms of the sticking coefficients at each step. As an example,
we study the importance of diffusion barriers for adatoms hopping down
descending steps (Schwoebel effect) during growth and post-growth equilibration
of the surface.Comment: 16 pages, REVTeX 3.0, IC-DDV-94-00