2 research outputs found

    Surface Kinetics and Generation of Different Terms in a Conservative Growth Equation

    Full text link
    A method based on the kinetics of adatoms on a growing surface under epitaxial growth at low temperature in (1+1) dimensions is proposed to obtain a closed form of local growth equation. It can be generalized to any growth problem as long as diffusion of adatoms govern the surface morphology. The method can be easily extended to higher dimensions. The kinetic processes contributing to various terms in the growth equation (GE) are identified from the analysis of in-plane and downward hops. In particular, processes corresponding to the (h -> -h) symmetry breaking term and curvature dependent term are discussed. Consequence of these terms on the stable and unstable transition in (1+1) dimensions is analyzed. In (2+1) dimensions it is shown that an additional (h -> -h) symmetry breaking term is generated due to the in-plane curvature associated with the mound like structures. This term is independent of any diffusion barrier differences between in-plane and out of-plane migration. It is argued that terms generated in the presence of downward hops are the relevant terms in a GE. Growth equation in the closed form is obtained for various growth models introduced to capture most of the processes in experimental Molecular Beam Epitaxial growth. Effect of dissociation is also considered and is seen to have stabilizing effect on the growth. It is shown that for uphill current the GE approach fails to describe the growth since a given GE is not valid over the entire substrate.Comment: 14 pages, 7 figure

    Analytical solution of generalized Burton--Cabrera--Frank equations for growth and post--growth equilibration on vicinal surfaces

    Full text link
    We investigate growth on vicinal surfaces by molecular beam epitaxy making use of a generalized Burton--Cabrera--Frank model. Our primary aim is to propose and implement a novel analytical program based on a perturbative solution of the non--linear equations describing the coupled adatom and dimer kinetics. These equations are considered as originating from a fully microscopic description that allows the step boundary conditions to be directly formulated in terms of the sticking coefficients at each step. As an example, we study the importance of diffusion barriers for adatoms hopping down descending steps (Schwoebel effect) during growth and post-growth equilibration of the surface.Comment: 16 pages, REVTeX 3.0, IC-DDV-94-00
    corecore