941 research outputs found
Elementary excitations in one-dimensional spin-orbital models: neutral and charged solitons and their bound states
We study, both numerically and variationally, the interplay between different
types of elementary excitations in the model of a spin chain with anisotropic
spin-orbit coupling, in the vicinity of the "dimer line" with an exactly known
dimerized ground state. Our variational treatment is found to be in a
qualitative agreement with the exact diagonalization results. Soliton pairs are
shown to be the lowest excitations only in a very narrow region of the phase
diagram near the dimer line, and the phase transitions are always governed by
magnon-type excitations which can be viewed as soliton-antisoliton bound
states. It is shown that when the anisotropy exceeds certain critical value, a
new phase boundary appears. In the doped model on the dimer line, the exact
elementary charge excitation is shown to be a hole bound to a soliton. Bound
states of those "charged solitons" are studied; exact solutions for N-hole
bound states are presented.Comment: 11 pages revtex, 6 figure
Spin-orbital gapped phase with least symmetry breaking in the one-dimensional symmetrically coupled spin-orbital model
To describe the spin-orbital energy gap formation in the one-dimensional
symmetrically coupled spin-orbital model, we propose a simple mean field theory
based on an SU(4) constraint fermion representation of spins and orbitals. A
spin-orbital gapped phase is formed due to a marginally relevant spin-orbital
valence bond pairing interaction. The energy gap of the spin and orbital
excitations grows extremely slowly from the SU(4) symmetric point up to a
maximum value and then decreases rapidly. By calculating the spin, orbital, and
spin-orbital tensor static susceptibilities at zero temperature, we find a
crossover from coherent to incoherent magnetic excitations as the spin-orbital
coupling decreasing from large to small values.Comment: 10 pages, Revtex file, 5 figure
Phase Diagram of a Spin Ladder with Cyclic Four Spin Exchange
We present the phase diagram of the Heisenberg model on the two leg
ladder with cyclic four spin exchange, determined by a combination of Exact
Diagonalization and Density Matrix Renormalization Group techniques. We find
six different phases and regimes: the rung singlet phase, a ferromagnetic
phase, two symmetry broken phases with staggered dimers and staggered scalar
chiralities, and a gapped region with dominant vector chirality or collinear
spin correlations. We localize the phase transitions and investigate their
nature.Comment: 4 pages, 6 figures, REVTeX 4, published versio
Series study of the One-dimensional S-T Spin-Orbital Model
We use perturbative series expansions about a staggered dimerized ground
state to compute the ground state energy, triplet excitation spectra and
spectral weight for a one-dimensional model in which each site has an S=\case
1/2 spin and a pseudospin , representing a doubly
degenerate orbital. An explicit dimerization is introduced to allow study of
the confinement of spinon excitations. The elementary triplet represents a
bound state of two spinons, and is stable over much of the Brillouine zone. A
special line is found in the gapped spin-liquid phase, on which the triplet
excitation is dispersionless. The formation of triplet bound states is also
investigated.Comment: 9 pages, 9 figure
Plasma Aβ42/40 ratio, p‐tau181, GFAP, and NfL across the Alzheimer's disease continuum: A cross‐sectional and longitudinal study in the AIBL cohort
Introduction
Plasma amyloid beta (Aβ)1-42/Aβ1-40 ratio, phosphorylated-tau181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) are putative blood biomarkers for Alzheimer's disease (AD). However, head-to-head cross-sectional and longitudinal comparisons of the aforementioned biomarkers across the AD continuum are lacking.
Methods
Plasma Aβ1-42, Aβ1-40, p-tau181, GFAP, and NfL were measured utilizing the Single Molecule Array (Simoa) platform and compared cross-sectionally across the AD continuum, wherein Aβ-PET (positron emission tomography)–negative cognitively unimpaired (CU Aβ−, n = 81) and mild cognitive impairment (MCI Aβ−, n = 26) participants were compared with Aβ-PET–positive participants across the AD continuum (CU Aβ+, n = 39; MCI Aβ+, n = 33; AD Aβ+, n = 46) from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) cohort. Longitudinal plasma biomarker changes were also assessed in MCI (n = 27) and AD (n = 29) participants compared with CU (n = 120) participants. In addition, associations between baseline plasma biomarker levels and prospective cognitive decline and Aβ-PET load were assessed over a 7 to 10-year duration.
Results
Lower plasma Aβ1-42/Aβ1-40 ratio and elevated p-tau181 and GFAP were observed in CU Aβ+, MCI Aβ+, and AD Aβ+, whereas elevated plasma NfL was observed in MCI Aβ+ and AD Aβ+, compared with CU Aβ− and MCI Aβ−. Among the aforementioned plasma biomarkers, for models with and without AD risk factors (age, sex, and apolipoprotein E (APOE) ε4 carrier status), p-tau181 performed equivalent to or better than other biomarkers in predicting a brain Aβ−/+ status across the AD continuum. However, for models with and without the AD risk factors, a biomarker panel of Aβ1-42/Aβ1-40, p-tau181, and GFAP performed equivalent to or better than any of the biomarkers alone in predicting brain Aβ−/+ status across the AD continuum. Longitudinally, plasma Aβ1-42/Aβ1-40, p-tau181, and GFAP were altered in MCI compared with CU, and plasma GFAP and NfL were altered in AD compared with CU. In addition, lower plasma Aβ1-42/Aβ1-40 and higher p-tau181, GFAP, and NfL were associated with prospective cognitive decline and lower plasma Aβ1-42/Aβ1-40, and higher p-tau181 and GFAP were associated with increased Aβ-PET load prospectively.
Discussion
These findings suggest that plasma biomarkers are altered cross-sectionally and longitudinally, along the AD continuum, and are prospectively associated with cognitive decline and brain Aβ-PET load. In addition, although p-tau181 performed equivalent to or better than other biomarkers in predicting an Aβ−/+ status across the AD continuum, a panel of biomarkers may have superior Aβ−/+ status predictive capability across the AD continuum
Phase Diagram of the Heisenberg Spin Ladder with Ring Exchange
We investigate the phase diagram of a generalized spin-1/2 quantum
antiferromagnet on a ladder with rung, leg, diagonal, and ring-exchange
interactions. We consider the exactly soluble models associated with the
problem, obtain the exact ground states which exist for certain parameter
regimes, and apply a variety of perturbative techniques in the regime of strong
ring-exchange coupling. By combining these approaches with considerations
related to the discrete Z_4 symmetry of the model, we present the complete
phase diagram.Comment: 17 pages, 10 figure
Solution of a two-leg spin ladder system
A model for a spin-1/2 ladder system with two legs is introduced. It is demonstrated that this model is solvable via the Bethe ansatz method for arbitrary values of the rung coupling J. This is achieved by a suitable mapping from the Hubbard model with appropriate twisted boundary conditions. We determine that a phase transition between gapped and gapless spin excitations occurs at the critical value J(c) = 1/2 of the rung coupling
- …