14 research outputs found
A Novel 2D Folding Technique for Enhancing Fermi Surface Signatures in the Momentum Density: Application to Compton Scattering Data from an Al-3at%Li Disordered Alloy
We present a novel technique for enhancing Fermi surface (FS) signatures in
the 2D distribution obtained after the 3D momentum density in a crystal is
projected along a specific direction in momentum space. These results are
useful for investigating fermiology via high resolution Compton scattering and
positron annihilation spectroscopies. We focus on the particular case of the
(110) projection in an fcc crystal where the standard approach based on the use
of the Lock-Crisp-West (LCW) folding theorem fails to give a clear FS image due
to the strong overlap with FS images obtained through projection from higher
Brillouin zones. We show how these superposed FS images can be disentangled by
using a selected set of reciprocal lattice vectors in the folding process. The
applicability of our partial folding scheme is illustrated by considering
Compton spectra from an Al-3at%Li disordered alloy single crystal. For this
purpose, high resolution Compton profiles along nine directions in the (110)
plane were measured. Corresponding highly accurate theoretical profiles in
Al-3at%Li were computed within the local density approximation (LDA)-based
Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA)
first-principles framework. A good level of overall accord between theory and
experiment is obtained, some expected discrepancies reflecting electron
correlation effects notwithstanding, and the partial folding scheme is shown to
yield a clear FS image in the (110) plane in Al-3%Li.Comment: 24 pages, 8 figures, to appear in Phys. Rev.