17 research outputs found

    Neutralino properties in the light of a further indication of an annual modulation effect in WIMP direct search

    Get PDF
    We demonstrate that the further indication of a possible annual modulation effect, singled out by the DAMA/NaI experiment for WIMP direct detection, is widely compatible with an interpretation in terms of a relic neutralino as the major component of dark matter in the Universe. We discuss the supersymmetric features of this neutralino in the Minimal Supersymmetric extension of the Standard Model (MSSM) and their implications for searches at accelerators.Comment: 15 pages, ReVTeX, 9 figures (included as PS files

    Effect of halo modelling on WIMP exclusion limits

    Get PDF
    WIMP direct detection experiments are just reaching the sensitivity required to detect galactic dark matter in the form of neutralinos. Data from these experiments are usually analysed under the simplifying assumption that the Milky Way halo is an isothermal sphere with maxwellian velocity distribution. Observations and numerical simulations indicate that galaxy halos are in fact triaxial and anisotropic. Furthermore, in the cold dark matter paradigm galactic halos form via the merger of smaller subhalos, and at least some residual substructure survives. We examine the effect of halo modelling on WIMP exclusion limits, taking into account the detector response. Triaxial and anisotropic halo models, with parameters motivated by observations and numerical simulations, lead to significant changes which are different for different experiments, while if the local WIMP distribution is dominated by small scale clumps then the exclusion limits are changed dramatically.Comment: 9 pages, 9 figures, version to appear in Phys. Rev. D, minor change

    Does Solar Physics Provide Constraints to Weakly Interacting Massive Particles?

    Get PDF
    We investigate whether present data on helioseismology and solar neutrino fluxes may constrain WIMP--matter interactions in the range of WIMP parameters under current exploration in WIMP searches. We find that, for a WIMP mass of 30 GeV, once the effect of the presence of WIMPs in the Sun's interior is maximized, the squared isothermal sound speed is modified, with respect to the standard solar model, by at most 0.4% at the Sun's center. The maximal effect on the Boron-8 solar neutrino flux is a reduction of 4.5%. Larger masses lead to smaller effects. These results imply that present sensitivities in the measurements of solar properties, though greatly improved in recent years, do not provide information or constraints on WIMP properties of relevance for dark matter. Furthermore, we show that, when current bounds from direct WIMP searches are taken into account, the effect induced by WIMPs with dominant coherent interactions are drastically reduced as compared to the values quoted above. The case of neutralinos in the minimal supersymmetric standard model is also discussed.Comment: 31 pages, 2 tables and 9 figures, typeset with ReVTeX4. The paper may also be found at http://www.to.infn.it/~fornengo/papers/helio.ps.gz or through http://www.to.infn.it/astropart/index.htm

    The modulation effect for supersymmetric dark matter detection with asymmetric velocity dispersion

    Full text link
    The detection of the theoretically expected dark matter is central to particle physics cosmology. Current fashionable supersymmetric models provide a natural dark matter candidate which is the lightest supersymmetric particle (LSP). Such models combined with fairly well understood physics like the quark substructure of the nucleon and the nuclear form factor and the spin response function of the nucleus, permit the evaluation of the event rate for LSP-nucleus elastic scattering. The thus obtained event rates are, however, very low or even undetectable. So it is imperative to exploit the modulation effect, i.e. the dependence of the event rate on the earth's annual motion. In this review we study such a modulation effect in directional and undirectional experiments. We calculate both the differential and the total rates using symmetric as well as asymmetric velocity distributions. We find that in the symmetric case the modulation amplitude is small, less than 0.07. There exist, however, regions of the phase space and experimental conditions such that the effect can become larger. The inclusion of asymmetry, with a realistic enhanced velocity dispersion in the galactocentric direction, yields the bonus of an enhanced modulation effect, with an amplitude which for certain parameters can become as large as 0.46.Comment: 35 LATEX pages, 7 Tables, 8 PostScript Figures include

    Data acquisition system for dark matter detectors

    No full text
    corecore