3 research outputs found

    Relativistic anisotropic charged fluid spheres with varying cosmological constant

    Full text link
    Static spherically symmetric anisotropic source has been studied for the Einstein-Maxwell field equations assuming the erstwhile cosmological constant Λ \Lambda to be a space-variable scalar, viz., Λ=Λ(r) \Lambda = \Lambda(r) . Two cases have been examined out of which one reduces to isotropic sphere. The solutions thus obtained are shown to be electromagnetic in origin as a particular case. It is also shown that the generally used pure charge condition, viz., ρ+pr=0 \rho + p_r = 0 is not always required for constructing electromagnetic mass models.Comment: 15 pages, 3 eps figure

    About Bianchi I with VSL

    Full text link
    In this paper we study how to attack, through different techniques, a perfect fluid Bianchi I model with variable G,c and Lambda, but taking into account the effects of a cc-variable into the curvature tensor. We study the model under the assumption,div(T)=0. These tactics are: Lie groups method (LM), imposing a particular symmetry, self-similarity (SS), matter collineations (MC) and kinematical self-similarity (KSS). We compare both tactics since they are quite similar (symmetry principles). We arrive to the conclusion that the LM is too restrictive and brings us to get only the flat FRW solution. The SS, MC and KSS approaches bring us to obtain all the quantities depending on \int c(t)dt. Therefore, in order to study their behavior we impose some physical restrictions like for example the condition q<0 (accelerating universe). In this way we find that cc is a growing time function and Lambda is a decreasing time function whose sing depends on the equation of state, w, while the exponents of the scale factor must satisfy the conditions i=13αi=1\sum_{i=1}^{3}\alpha_{i}=1 and i=13αi2<1,\sum_{i=1}^{3}\alpha_{i}^{2}<1, ω\forall\omega, i.e. for all equation of state,, relaxing in this way the Kasner conditions. The behavior of GG depends on two parameters, the equation of state ω\omega and ϵ,\epsilon, a parameter that controls the behavior of c(t),c(t), therefore GG may be growing or decreasing.We also show that through the Lie method, there is no difference between to study the field equations under the assumption of a cc-var affecting to the curvature tensor which the other one where it is not considered such effects.Nevertheless, it is essential to consider such effects in the cases studied under the SS, MC, and KSS hypotheses.Comment: 29 pages, Revtex4, Accepted for publication in Astrophysics & Space Scienc
    corecore