78 research outputs found

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Regulation of fatty acid production in transgenic crops

    No full text

    Random functions in H ?

    No full text

    High fat diet‐induced maternal obesity alters fetal hippocampal development

    No full text
    The importance of maternal nutrition for fetal brain development is increasingly recognized. Previous studies have suggested that maternal obesity or maternal exposure to obesogenic diets may permanently alter brain structure and function in the offspring. To test whether maternal exposure to a high-fat diet, prior and during gestation, alters fetal hippocampal development, we fed 8-week old C57BL/6 females with a high-fat diet (60% calories from fat) for 10 weeks prior to matting and 17 days after. Fetal brains at embryonic day E17 were used to determine developmental changes in the hippocampus. We report that maternal exposure to the high-fat diet induced small for gestational age (SGA) status and fetal resorption. The proliferation of neural progenitors was increased in the neuroepithelium from hippocampus and cortex in fetuses from mothers fed the high-fat diet when compared to controls, but decreased within the dentate gyrus (DG). Apoptosis in the hippocampus was decreased (Ammon’s Horn and fimbria). The differentiation of calretinin-positive neurons within the DG was also decreased. These data indicate that, under the influence of a maternal high-fat diet administered prior and during gestation, fetal hippocampal development is altered at embryonic day 17, as indicated by region-specific changes in proliferation of neural precursors, decreased apoptosis, and by decreased neuronal differentiation within the dentate gyrus
    corecore