1 research outputs found

    Development and evaluation of new control algorithms for a mechanical golf swing device

    Get PDF
    Golf swing machines have become fundamental tools in the development of new equipment because they provide more consistent swing motions than golfers. Golf robots perform a simplification of the complex sequence of motions that compose a golf swing; however, traditional devices are typically capable of performing only a single swing profile at variable speeds. Significant differences exist between individual golfers’ swing motions, especially for golfers of different ability, experience, and physical stature, which suggests a requirement for swing profile variability in mechanical simulators. This investigation has found that the swing motion of a traditional golf robot provides a poor representation of golfers’ swings and, as a result, a bespoke control system has been developed for a commercially available golf robot to enable performance of variable swing profiles with positional feedback. Robot swing command files are generated by fitting a curve to a number of discrete data points that are equally spaced in time, and which define angles representative of individual golfers’ swings. The swing profiles of a professional golfer and a traditional golf robot were repeated accurately using this golf robot with a modified motion control system. The capability for individual golfers’ swings to be accurately replicated using a mechanical device was demonstrated using feedback data. All manufacturers recognize the importance of tailoring equipment to the unique characteristics of a particular golfer’s swing, and this increased robot functionality will provide considerable benefits in the development of customized equipment
    corecore