6 research outputs found

    Theory of Coherent cc-Axis Josephson Tunneling between Layered Superconductors

    Full text link
    We calculate exactly the Josephson current for cc-axis coherent tunneling between two layered superconductors, each with internal coherent tight-binding intra- and interlayer quasiparticle dispersions. Our results also apply when one or both of the superconductors is a bulk material, and include the usually neglected effects of surface states. For weak tunneling, our results reduce to our previous results derived using the tunneling Hamiltonian. Our results are also correct for strong tunneling. However, the cc-axis tunneling results of Tanaka and Kashiwaya are shown to be incorrect in any limit. In addition, we consider the cc-axis coherent critical current between two identical layered superconductors twisted an angle ϕ0\phi_0 about the cc-axis with respect to each other. Regardless of the order parameter symmetry, our coherent tunneling results using a tight-binding intralayer quasiparticle dispersion are inconsistent with the recent cc-axis twist bicrystal Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} twist junction experiments of Li {\it et al.}Comment: 11 pages, 13 figures, submitted to Physical Review
    corecore