248 research outputs found

    Simultaneous and interleaved acquisition of NMR signals from different nuclei with a clinical MRI scanner.

    Get PDF
    Modification of a clinical MRI scanner to enable simultaneous or rapid interleaved acquisition of signals from two different nuclei. A device was developed to modify the local oscillator signal fed to the receive channel(s) of an MRI console. This enables external modification of the frequency at which the receiver is sensitive and rapid switching between different frequencies. Use of the device was demonstrated with interleaved and simultaneous <sup>31</sup> P and <sup>1</sup> H spectroscopic acquisitions, and with interleaved <sup>31</sup> P and <sup>1</sup> H imaging. Signal amplitudes and signal-to-noise ratios were found to be unchanged for the modified system, compared with data acquired with the MRI system in the standard configuration. Interleaved and simultaneous <sup>1</sup> H and <sup>31</sup> P signal acquisition was successfully demonstrated with a clinical MRI scanner, with only minor modification of the RF architecture. While demonstrated with <sup>31</sup> P, the modification is applicable to any detectable nucleus without further modification, enabling a wide range of simultaneous and interleaved experiments to be performed within a clinical setting. Magn Reson Med 76:1636-1641, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited

    Theory of Interaction Effects in N-S Junctions out of Equilibrium

    Full text link
    We consider a normal metal - superconductor (N-S) junction in the regime, when electrons in the normal metal are driven out of equilibrium. We show that the non-equilibrium fluctuations of the electron density in the N-layer cause the fluctuations of the phase of the order parameter in the S-layer. As a result, the density of states in the superconductor deviates from the BCS form, most notably the density of states in the gap becomes finite. This effect can be viewed as a result of the time reversal symmetry breaking due to the non-equilibrium, and can be described in terms of a low energy collective mode of the junction, which couples normal currents in N-layer and supercurrents. This mode is analogous to the Schmid-Sch\"{o}n mode. To interpret their measurements of the tunneling current, Pothier {\em et. al} [Phys. Rev. Lett. {\bf 79}, 3490 (1997)] had to assume that the energy relaxation rate in the normal metal is surprisingly high. The broadening of the BCS singularity of the density of states in the S-layer manifest itself similarly to the broadening of the distribution function. Mechanism suggested here can be a possible explanation of this experimental puzzle. We also propose an independent experiment to test our explanation.Comment: 16 pages, 2 .eps figure

    Critical fluctuation conductivity in layered superconductors in strong electric field

    Full text link
    The paraconductivity, originating from critical superconducting order-parameter fluctuations in the vicinity of the critical temperature in a layered superconductor is calculated in the frame of the self-consistent Hartree approximation, for an arbitrarily strong electric field and zero magnetic field. The paraconductivity diverges less steep towards the critical temperature in the Hartree approximation than in the Gaussian one and it shows a distinctly enhanced variation with the electric field. Our results indicate that high electric fields can be effectively used to suppress order-parameter fluctuations in high-temperature superconductors.Comment: 11 pages, 2 figures, to be published in Phys. Rev.

    Collapse of the vortex-lattice inductance and shear modulus at the melting transition in untwinned YBa2Cu3O7\rm YBa_2Cu_3O_7

    Full text link
    The complex resistivity ρ^(ω)\hat{\rho}(\omega) of the vortex lattice in an untwinned crystal of 93-K YBa2Cu3O7\rm YBa_2Cu_3O_7 has been measured at frequencies ω/2π\omega/2\pi from 100 kHz to 20 MHz in a 2-Tesla field Hc\bf H\parallel c, using a 4-probe RF transmission technique that enables continuous measurements versus ω\omega and temperature TT. As TT is increased, the inductance Ls(ω)=Imρ^(ω)/ω{\cal L}_s(\omega) ={\rm Im} \hat{\rho}(\omega)/ \omega increases steeply to a cusp at the melting temperature TmT_m, and then undergoes a steep collapse consistent with vanishing of the shear modulus c66c_{66}. We discuss in detail the separation of the vortex-lattice inductance from the `volume' inductance, and other skin-depth effects. To analyze the spectra, we consider a weakly disordered lattice with a low pin density. Close fits are obtained to ρ1(ω)\rho_1(\omega) over 2 decades in ω\omega. Values of the pinning parameter κ\kappa and shear modulus c66c_{66} obtained show that c66c_{66} collapses by over 4 decades at TmT_m, whereas κ\kappa remains finite.Comment: 11 pages, 8 figures, Phys. Rev. B, in pres

    Moving glass phase of driven lattices

    Full text link
    We study periodic lattices, such as vortex lattices, driven by an external force in a random pinning potential. We show that effects of static disorder persist even at large velocity. It results in a novel moving glass state with topological order analogous to the static Bragg glass. The lattice flows through well-defined, elastically coupled, {\it % static} channels. We predict barriers to transverse motion resulting in finite transverse critical current. Experimental tests of the theory are proposed.Comment: Revised version, shortened, 8 pages, REVTeX, no figure

    Coherent Charge Transport in Metallic Proximity Structures

    Full text link
    We develop a detailed microscopic analysis of electron transport in normal diffusive conductors in the presence of proximity induced superconducting correlation. We calculated the linear conductance of the system, the profile of the electric field and the densities of states. In the case of transparent metallic boundaries the temperature dependent conductance has a non-monotoneous ``reentrant'' structure. We argue that this behavior is due to nonequilibrium effects occuring in the normal metal in the presence of both superconducting correlations and the electric field there. Low transparent tunnel barriers suppress the nonequilibrium effects and destroy the reentrant behavior of the conductance. If the wire contains a loop, the conductance shows Aharonov-Bohm oscillations with the period Φ0=h/2e\Phi_0=h/2e as a function of the magnetic flux Φ\Phi inside the loop. The amplitude of these oscillations also demonstrates the reentrant behavior vanishing at T=0T=0 and decaying as 1/T1/T at relatively large temperatures. The latter behavior is due to low energy correlated electrons which penetrate deep into the normal metal and ``feel'' the effect of the magnetic flux Φ\Phi. We point out that the density of states and thus the ``strengh'' of the proximity effect can be tuned by the value of the flux inside the loop. Our results are fully consistent with recent experimental findings.Comment: 16 pages RevTeX, 23 Postscript figures, submitted to Phys. Rev.

    Quantum phase transition in a two-channel-Kondo quantum dot device

    Full text link
    We develop a theory of electron transport in a double quantum dot device recently proposed for the observation of the two-channel Kondo effect. Our theory provides a strategy for tuning the device to the non-Fermi-liquid fixed point, which is a quantum critical point in the space of device parameters. We explore the corresponding quantum phase transition, and make explicit predictions for behavior of the differential conductance in the vicinity of the quantum critical point

    Ginzburg-Landau Expansion in Non-Fermi Liquid Superconductors: Effect of the Mass Renormalization Factor

    Full text link
    We reconsider the Ginzburg-Landau expansion for the case of a non-Fermi liquid superconductor. We obtain analytical results for the Ginzburg-Landau functional in the critical region around the superconducting phase transition, T <= T_c, in two special limits of the model, i.e., the spin-charge separation case and the anomalous Fermi liquid case. For both cases, in the presence of a mass renormalization factor, we derived the form and the specific dependence of the coherence length, penetration depth, specific heat jump at the critical point, and the magnetic upper critical field. For both limits the obtained results reduce to the usual BCS results for a two dimensional s-wave superconductor. We compare our results with recent and relevant theoretical work. The results for a d--wave symmetry order parameter do not change qualitatively the results presented in this paper. Only numerical factors appear additionally in our expressions.Comment: accepted for publication in Physical Review

    Inelastic Scattering Time for Conductance Fluctuations

    Full text link
    We revisit the problem of inelastic times governing the temperature behavior of the weak localization correction and mesoscopic fluctuations in one- and two-dimensional systems. It is shown that, for dephasing by the electron electron interaction, not only are those times identical but the scaling functions are also the same.Comment: 10 pages Revtex; 5 eps files include
    corecore