4 research outputs found

    Loading a Bose-Einstein Condensate onto an Optical Lattice: an Application of Optimal Control Theory to The Non Linear Schr\"odinger Equation

    Full text link
    Using a set of general methods developed by Krotov [A. I. Konnov and V. A. Krotov, Automation and Remote Control, {\bf 60}, 1427 (1999)], we extend the capabilities of Optimal Control Theory to the Nonlinear Schr\"odinger Equation (NLSE). The paper begins with a general review of the Krotov approach to optimization. Although the linearized version of the method is sufficient for the linear Schr\"odinger equation, the full flexibility of the general method is required for treatment of the nonlinear Schr\"odinger equation. Formal equations for the optimization of the NLSE, as well as a concrete algorithm are presented. As an illustration, we consider a Bose-Einstein condensate initially at rest in a harmonic trap. A phase develops across the BEC when an optical lattice potential is turned on. The goal is to counter this effect and keep the phase flat by adjusting the trap strength. The problem is formulated in the language of Optimal Control Theory (OCT) and solved using the above methodology. To our knowledge, this is the first rigorous application of OCT to the Nonlinear Schr\"odinger equation, a capability that is bound to have numerous other applications.Comment: 11 pages, 4 figures, A reference added, Some typos correcte
    corecore