12 research outputs found

    Adaptive dynamic control of quadrupedal robotic gaits with artificial reaction networks.

    Get PDF
    The Artificial Reaction Network (ARN) is a bio-inspired connectionist paradigm based on the emerging field of Cellular Intelligence. It has properties in common with both AI and Systems Biology techniques including Artificial Neural Networks, Petri Nets, and S-Systems. In this paper, elements of temporal dynamics and pattern recognition are combined within a single ARN control system for a quadrupedal robot. The results show that the ARN has similar applicability to Artificial Neural Network models in robotic control tasks. In comparison to neural Central Pattern Generator models, the ARN can control gaits and offer reduced complexity. Furthermore, the results show that like spiky neural models, the ARN can combine pattern recognition and complex temporal control functionality in a single network

    Temporal patterns in artificial reaction networks.

    Get PDF
    The Artificial Reaction Network (ARN) is a bio-inspired connectionist paradigm based on the emerging field of Cellular Intelligence. It has properties in common with both AI and Systems Biology techniques including Artificial Neural Networks, Petri Nets, and S-Systems. This paper discusses the temporal aspects of the ARN model using robotic gaits as an example and compares it with properties of Artificial Neural Networks. The comparison shows that the ARN based network has similar functionality
    corecore