101 research outputs found

    M\"ossbauer, nuclear inelastic scattering and density functional studies on the second metastable state of Na2[Fe(CN)5NO]\cdot2H2O

    Full text link
    The structure of the light-induced metastable state SII of Na2[Fe(CN)5NO]\cdot2H2O 14 was investigated by transmission M\"ossbauer spectroscopy (TMS) in the temperature range 15 between 85 and 135 K, nuclear inelastic scattering (NIS) at 98 K using synchrotron 16 radiation and density functional theory (DFT) calculations. The DFT and TMS results 17 strongly support the view that the NO group in SII takes a side-on molecular orientation 18 and, further, is dynamically displaced from one eclipsed, via a staggered, to a second 19 eclipsed orientation. The population conditions for generating SII are optimal for 20 measurements by TMS, yet they are modest for accumulating NIS spectra. Optimization 21 of population conditions for NIS measurements is discussed and new NIS experiments on 22 SII are proposed

    Dynamics of Metal Centers Monitored by Nuclear Inelastic Scattering

    Full text link
    Nuclear inelastic scattering of synchrotron radiation has been used now since 10 years as a tool for vibrational spectroscopy. This method has turned out especially useful in case of large molecules that contain a M\"ossbauer active metal center. Recent applications to iron-sulfur proteins, to iron(II) spin crossover complexes and to tin-DNA complexes are discussed. Special emphasis is given to the combination of nuclear inelastic scattering and density functional calculations

    Microscopic investigation of the Johari-Goldstein relaxation in cumene:Insights on the mosaic structure in a van der Waals liquid

    Get PDF
    The Johari-Goldstein (βJG) relaxation anticipates in time, and is closely connected to, the structural relaxation in deeply supercooled liquids. Probing its microscopic properties is a crucial step for a complete understanding of the glass-transition. We here report the investigation of the van der Waals glass-former cumene using time-domain interferometry, a technique able to probe microscopic density fluctuations at the spatial and temporal scales relevant for the βJG-relaxation. We find that the molecules participating in it undergo a restricted motion, though sufficient to induce local, cage-breaking events at the characteristic time-scale for molecular re-orientations. A detailed characterization of the relaxation strength, i.e. the fraction of molecules involved in the relaxation process, shows that such molecules are connected in a percolating cluster which, above the glass-transition temperature, Tg, is weakly dependent on temperature. Our results confirm thus previous observations of a mosaic structure associated to the βJG-relaxation in the supercooled state, and provide additional information on its temperature evolution above the glass-transition temperature. We conclude that the observed microscopic properties of the βJG-relaxation, and thus of the associated mosaic structure, are generic and independent of the molecular interaction potential. In addition, we show that, while the dynamics within the percolating cluster becomes progressively slower on approaching Tg, the fraction of the molecules involved in cage-breaking events within the βJG-relaxation is not affected by temperature.</p

    Estimation of single event effect sensitivity in VLSI to neutron irradiation

    No full text

    Estimation of ion- and proton-induced SEU rate by two values of saturation cross sections

    No full text

    Simplified estimation of proton-induced SEU

    No full text

    Evaluation of VLSI Ionization Response Under Pulsed Neutron Exposure

    No full text

    CYBERBULLING AS A SOCIO-PEDAGOGICAL PROBLEM IN HIGHER SCHOOL

    No full text
    corecore