101 research outputs found
M\"ossbauer, nuclear inelastic scattering and density functional studies on the second metastable state of Na2[Fe(CN)5NO]2H2O
The structure of the light-induced metastable state SII of
Na2[Fe(CN)5NO]2H2O 14 was investigated by transmission M\"ossbauer
spectroscopy (TMS) in the temperature range 15 between 85 and 135 K, nuclear
inelastic scattering (NIS) at 98 K using synchrotron 16 radiation and density
functional theory (DFT) calculations. The DFT and TMS results 17 strongly
support the view that the NO group in SII takes a side-on molecular orientation
18 and, further, is dynamically displaced from one eclipsed, via a staggered,
to a second 19 eclipsed orientation. The population conditions for generating
SII are optimal for 20 measurements by TMS, yet they are modest for
accumulating NIS spectra. Optimization 21 of population conditions for NIS
measurements is discussed and new NIS experiments on 22 SII are proposed
Dynamics of Metal Centers Monitored by Nuclear Inelastic Scattering
Nuclear inelastic scattering of synchrotron radiation has been used now since
10 years as a tool for vibrational spectroscopy. This method has turned out
especially useful in case of large molecules that contain a M\"ossbauer active
metal center. Recent applications to iron-sulfur proteins, to iron(II) spin
crossover complexes and to tin-DNA complexes are discussed. Special emphasis is
given to the combination of nuclear inelastic scattering and density functional
calculations
Microscopic investigation of the Johari-Goldstein relaxation in cumene:Insights on the mosaic structure in a van der Waals liquid
The Johari-Goldstein (βJG) relaxation anticipates in time, and is closely connected to, the structural relaxation in deeply supercooled liquids. Probing its microscopic properties is a crucial step for a complete understanding of the glass-transition. We here report the investigation of the van der Waals glass-former cumene using time-domain interferometry, a technique able to probe microscopic density fluctuations at the spatial and temporal scales relevant for the βJG-relaxation. We find that the molecules participating in it undergo a restricted motion, though sufficient to induce local, cage-breaking events at the characteristic time-scale for molecular re-orientations. A detailed characterization of the relaxation strength, i.e. the fraction of molecules involved in the relaxation process, shows that such molecules are connected in a percolating cluster which, above the glass-transition temperature, Tg, is weakly dependent on temperature. Our results confirm thus previous observations of a mosaic structure associated to the βJG-relaxation in the supercooled state, and provide additional information on its temperature evolution above the glass-transition temperature. We conclude that the observed microscopic properties of the βJG-relaxation, and thus of the associated mosaic structure, are generic and independent of the molecular interaction potential. In addition, we show that, while the dynamics within the percolating cluster becomes progressively slower on approaching Tg, the fraction of the molecules involved in cage-breaking events within the βJG-relaxation is not affected by temperature.</p
Estimation of ion- and proton-induced SEU rate by two values of saturation cross sections
- …
