25 research outputs found
A barotropic global ocean model and its parallel implementation on unstructured grids
Unstructured grids can represent the complex geometry of the ocean
basin with high fidelity. The lack of development tools supporting irregular
grid problems discourages the use of such grids on parallel architectures.
The state of the art ocean models are based on logically rectangular grids
which makes it difficult to fit the complex ocean boundaries. In this pa-
per,we demonstrate the use of unstructured triangular grids for solving
a barotropic ocean model in spherical geometry with realistic continental
boundaries. The model is based on the shallow water equations with a
Coriolis force. A realistic wind forcing and a simple bottom friction term
are also included. The numerical method is a cell based upwind finite
volume scheme with explicit time stepping. From a parallelization point
of view, that means there is only a nearest neighbour communication. A
heuristic domain partitioning method was employed to distribute the load
among processors. The resulting decomposition resembles 2D grid topo-
logy with some long distance communication paths. The model was im-
plemented using the PVM message passing library and tested on a cluster
of workstations and on an IBM SP2
Large-space shell-model calculations for light nuclei
An effective two-body interaction is constructed from a new Reid-like
potential for a large no-core space consisting of six major shells and is used
to generate the shell-model properties for light nuclei from =2 to 6. (For
practical reasons, the model space is partially truncated for =6.) Binding
energies and other physical observables are calculated and compare favorably
with experiment.Comment: prepared using LaTex, 21 manuscript pages, no figure
Low-Energy Direct Capture in the 8Li(n,gamma)9Li and 8B(p,gamma)9C Reactions
The cross sections of the 8Li(n,gamma)9Li and 8B(p,gamma)9C capture reactions
have been analyzed using the direct capture model. At low energies which is the
astrophysically relevant region the capture process is dominated by E1
transitions from incoming s-waves to bound p-states. The cross sections of both
mirror reactions can be described simultaneously with consistent potential
parameters, whereas previous calculations have overestimated the capture cross
sections significantly. However, the parameters of the potential have to be
chosen very carefully because the calculated cross section of the
8Li(n,gamma)9Li reaction depends sensitively on the potential strength.Comment: 6 pages, 5 figures, Phys. Rev. C, accepte
Molecular characteristics of carbapenemase-producing Enterobacterales in the Netherlands; results of the 2014–2018 national laboratory surveillance
Objectives: Carbapenem resistance mediated by mobile genetic elements has emerged worldwide and has become a major public health threat. To gain insight into the molecular epidemiology of carbapenem resistance in The Netherlands, Dutch medical microbiology laboratories are requested to submit suspected carbapenemase-producing Enterobacterales (CPE) to the National Institute for Public Health and the Environment as part of a national surveillance system. Methods: Meropenem MICs and species identification were confirmed by E-test and MALDI-TOF and carbapenemase production was assessed by the Carbapenem Inactivation Method. Of all submitted CPE, one species/carbapenemase gene combination per person per year was subjected to next-generation sequencing (NGS). Results: In total, 1838 unique isolates were received between 2014 and 2018, of which 892 were unique CPE isolates with NGS data available. The predominant CPE species were Klebsiella pneumoniae (n = 388, 43%), Escherichia coli (n = 264, 30%) and Enterobacter cloacae complex (n = 116, 13%). Various carbapenemase alleles of the same carbapenemase gene resulted in different susceptibilities to meropenem and this effect varied between species. Analyses of NGS data showed variation of prevalence of carbapenemase alleles over time with blaOXA-48 being predominant (38%, 336/892), followed by blaNDM-1 (16%, 145/892). For the first time in the Netherlands, blaOXA-181, blaOXA-232 and blaVIM-4 were detected. The genetic background of K. pneumoniae and E. coli isolates was highly diverse. Conclusions: The CPE population in the Netherlands is diverse, suggesting multiple introductions. The predominant carbapenemase alleles are blaOXA-48 and blaNDM-1. There was a clear association between species, carbapenemase allele and susceptibility to meropenem
National laboratory-based surveillance system for antimicrobial resistance: a successful tool to support the control of antimicrobial resistance in the Netherlands
An important cornerstone in the control of antimicrobial resistance (AMR) is a well-designed quantitative system for the surveillance of spread and temporal trends in AMR. Since 2008, the Dutch national AMR surveillance system, based on routine data from medical microbiological laboratories (MMLs), has developed into a successful tool to support the control of AMR in the Netherlands. It provides background information for policy making in public health and healthcare services, supports development of empirical antibiotic therapy guidelines and facilitates in-depth research. In addition, participation of the MMLs in the national AMR surveillance network has contributed to sharing of knowledge and quality improvement. A future improvement will be the implementation of a new semantic standard together with standardised data transfer, which will reduce errors in data handling and enable a more real-time surveillance. Furthermore, the
An effective interaction derived from spectra and static moments
A method to derive a phenomenological effective interaction based on energy spectra as well as on static moments of many-particle nuclei is presented. The approach has been applied to A = 4−16 nuclei. It follows that by including static moments in the input data the agreement with experimental values can be much improved without increasing the number of parameters